A Practical Approach to Data Science and Data Analytics
06 March 2019
Tom Sullivan
Lead Associate | Herren Associates
A Practical Approach to Data Science and Analytics: Agenda

01 BACKGROUND
02 APPROACH OVERVIEW / CASE STUDY
03 DEFINING THE PROBLEM
04 ACQUIRING DATA
05 PREPARING DATA
06 ANALYZING DATA
07 ADVISING
Data science and data analytics fields are growing; whether in the commercial space, DoD fueling military readiness, or Academia with the growing presence of Universities offering master’s degrees in Data Science.
Data Science vs. Data Analytics, What is the Difference?

- Data science and data analytics are unique fields, with the major difference being the scope and exploration.

Scope:

- Data Science: Multidisciplinary field focused on finding insights by incorporating computer science, predictive analytics, statistics, and machine learning to parse through massive raw or unstructured data sets.
- Data Analytics: Encompasses branches of broader statistics and analysis to combine diverse sources of data and locate connections while simplifying the results.

Exploration:

- Data Science: Fixates on **unearthing answers to the things we don’t know we don’t know**.
- Data Analytics: Creates methods to capture, process, and organize data to **uncover actionable insights for current problems**, and establishing the best way to present this data.

Data Scientists' main goal is to ask questions and locate potential avenues of study, with less concern for specific answers and more emphasis placed on finding the right question to ask.
Herren leverages a systematic and iterative approach to tackling data science and data analytics challenges including cost estimating:

- **Define**: Define the problem and data requirements plan
- **Acquire**: Obtain necessary data
- **Prepare**: Structure / Restructure data to fit analytic needs
- **Analyze**: Interpreting data using statistical or analytical techniques
- **Advise**: Present data to stakeholders in easily interpretable format
- **Case Study:** The Navy is reviewing their maintenance program and wants to project costs for a ship class. The Navy is interested in gaining better insight on the following cost drivers:
 - Port location where work is performed
 - Variance in costs of systems, and
 - Impact of contracting strategies
DEFINING THE PROBLEM
Define the Problem

- Engage stakeholders to gain an understanding of their needs
 - What types of issues do stakeholders have?
- Identify key opportunities
 - Solving which issue will make the greatest impact

Case Study Problem: The Navy wants to better understand their cost drivers

Develop Hypothesis

- Determine what you expect from your analysis
 - Is the issue worth pursuing? If so, use this as your defined hypothesis

Case Study Hypothesis: Port location of maintenance work is being done is the biggest cost driver for the availability

- What data would you need to gain an in-depth understanding of the issues?
 - Begin thinking about whether the data exists to solve your defined problem
ACQUIRING DATA
Explore the different sources and structures of data available and determine if they would help accept or refute the hypothesis.

Identify ground rules and assumptions.

Obtain all necessary data to see the whole picture.

- Structured Data: Data that resides in fixed fields
- Semi-structured Data: Data that contains tags and other markers to separate data elements
- Unstructured Data: Data that does not reside in fixed fields

Case Study: Leverage different data sources and structures for future analysis

Structured:
- Ex. Database Spreadsheets

Semi-Structured:
- Ex. XML or HTML Spreadsheets

Unstructured:
- Ex. Books, emails, untagged audio, images, and video
Data Validation: Process of ensuring data has undergone data cleansing so the quality of the data is useful and correct

7. Best Practices Checklist: Data

☐ As the foundation of an estimate, data
 ✓ Have been gathered from historical actual cost, schedule and program, and technical sources;
 ✓ Apply to the program being estimated;
 ✓ Have been analyzed for cost drivers;
 ✓ Have been collected from primary sources, if possible, and secondary sources as the next best option, especially for cross-checking results;
 ✓ Have been adequately documented as to source, content, time, units, assessment of accuracy and reliability, and circumstances affecting the data;
 ✓ Have been continually collected, protected, and stored for future use;
 ✓ Were assembled as early as possible, so analysts can participate in site visits to understand the program and question data providers.

☐ Before being used in a cost estimate, the data were
 ✓ Fully reviewed to understand their limitations and risks;
 ✓ Segregated into nonrecurring and recurring costs;
 ✓ Validated, using historical data as a benchmark for reasonableness;
 ✓ Current and found applicable to the program being estimated;
 ✓ Analyzed with a scatter plot to determine trends and outliers;
 ✓ Analyzed with descriptive statistics;
 ✓ Normalized to account for cost and sizing units, mission or application, technology maturity, and content so they are consistent for comparisons;
 ✓ Normalized to constant base-year dollars to remove the effects of inflation, and the inflation index was documented and explained.

Source: GAO Cost Estimating and Assessment Guide
Data Re/structuring: If data isn’t cleanly structured, it can inhibit analysis

- Increasing efficiencies in data structuring decreases the overall amount of data analysis
- Determine what fields are necessary and data flexibility needs
- Typical data cleaning activities include outlier checking, data parsing, null values, and value imputation
 - All of these are made easier with well structured data
- Precursor to relational databases & analysis tools (R, Python, Access)
 - Work best with data that is in a specific structure
- Real-world data is almost never in the correct form for analysis. As such, it requires structuring beforehand

80% of data analysis is spent cleaning and preparing data – before any analysis is done!
Problem: Fiscal years are used as the header of the table.

- The “messy” data presented above is often used for presentation purposes.
- Often used for displaying information over time (previous financial management dashboard example)
- More easily readable for humans, but is less useful for computers and software

Solution: “melt” columns into rows

<table>
<thead>
<tr>
<th>Ship Classes</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVN</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>CG 47</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>DDG 51</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>66</td>
</tr>
<tr>
<td>LCS</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>SSBN</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>LHA 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LHD 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>LPD 17</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>LSD 41</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>LSD 49</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MCM 1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>AS 39</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ESB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Data for illustrative purposes and does not reflect fielding profile
- **Relational Database** – Utilize numerous tables with relationships connecting all information and allowing simple extraction and reporting of information across tables
 - Reduced data redundancy
 - Scales well – stores large amounts of data efficiently
 - Powerful data manipulation enabled using SQL

- **Case Study**: Leverage structured data sets in tables to form relationship allowing for queries and more efficient analysis

![Diagram of Relationships](image-url)
ANALYZING DATA
Data Analytics: Davenport and Harris characterize data analytics as beginning with statistical analysis ("Why is this happening") and enhancing a competitive advantage up through predictive modeling and optimization.

 Numerous analytical approaches and techniques exist and are dependent on the previously defined problem and data available.

 Numerous tools exist that support the efficiency and effectiveness of analytical approaches and techniques; including, but not limited to:

 - Python: Interpreted, object-oriented, high-level programming language with dynamic semantics
 - R: Free software environment for statistical computing and graphics

 Case Study: Leverage Python and R to analyze correlations of variables impacting cost drivers and predict maintenance costs

 - Leverage Python modules and packages, to run data correlations efficiently across large data sets and multiple variables
 - Leverage R in support of the proposal evaluation process, including linear and non-linear regressions, and sensitivity analysis
- Summarize your findings and conclusions
 - Present data to stakeholders in easily interpretable format
 - Develop charts and graphs that support your thesis
 - Consolidate your findings into a report for the stakeholders

- **Case Study: Data Visualization**
 - Link insights to financial and operational metrics to show the impact
 - Ensure your results align with the stakeholder’s strategy
 - Provides real-time scenario analysis and collaboration with stakeholders