Development and Application of CV Benchmarks

Naval Center for Cost Analysis
SCEA Luncheon; 18 May 2011

Brian Flynn
Contents

Development of Benchmarks
- Conjectures
- Data Collection
- Cost Growth Calculations
- MS B Results
- MS C Results
- Other Findings
- Summary of Findings
- Policy Considerations
- Operational Construct

Application of Benchmarks
- Case Study: NATO AGS
 - Program
 - Cost Element Structure
 - ICE Methodology
 - Point Estimate
 - Elements of Risk
 - Scenarios
 - S-Curve
- S-Curve Tool
- Backup
Conjectures of CV Behavior

Conjectures

• Estimation Consistency
 – CVs from ICEs jibe with acquisition experience
 • Evaluation of accuracy more problematic

• Decline During Acquisition
 – CVs decrease throughout acquisition lifecycle
 • MS A, B, C, FRP DR

• Platform Homogeneity
 – CVs equivalent for aircraft, ships, and other platform types
 • Cost growth factors and variances

Conjectures

• Adjustment Decline
 – CVs decrease when adjusted for changes in quantity and inflation

• Secular Invariance
 – CVs steady long-term
Data Collection

Source

- SAR Summary Sheets
 - Total program acquisition cost
 - R&D, procurement, MILCON
 - Tied to acquisition milestones
 - Planning Estimate (PE) for MS A
 - Development Estimate (DE) for MS B
 - Production Estimate (PdE) for MS C
 - Historically, equivalent to milestones I, II, and III
 - Base-year$ and then-year$
 - From 1985 to 2009

Focus

- DON MDAPS only
- 100 observations
- Baseline Estimates date from 1969 to 2003
 - Mostly completed programs but a few on-going such as LPD-17 and LCS
 - Ships, submarines, missiles, and aircraft predominate
 - Excludes notables such as A-12 and Presidential Helicopter
Cost Growth Calculations

Cost Growth Factors (CGFs)
- **Unadjusted for quantity changes**
 - Current Estimate in base-year$ divided by Baseline Estimate in base-year$
 - Adjusted for changes in inflation
 - Current Estimate in then-year$ divided by Baseline Estimate in then-year$
 - Completely unadjusted
- **Adjusted for quantity changes**
 - Also in base-year and then-year$

Quantity Adjustment
- **Three choices**
 - Adjust baseline estimate to reflect current quantities
 - $CGF = CE / (BE + QΔ)$
 - Analogous to Paasche Index
 - Used in SARs
 - Adjust current estimate to reflect baseline quantities
 - $CGF = (CE - QΔ) / BE$
 - Analogous to Laspeyres Index
 - “Fischer” index = square root of the product of the first two
- **CV deltas insignificant (.02 and .04 spreads in BY$ & TY$ for ships & submarines)**

Cost Growth Calculations

Example: CG-47 Class

• Baseline Estimate (BE) of 1978
 – 16 ships at $9.01B (BY$) and $14.08B (TY$)
• Current Estimate (CE) of 1992
 – 27 ships at $14.11B (BY$) and $23.28B (TY$)
 • Deltas in BY$
 • $5.10B total & $5.49B quantity
 • Deltas in TY$
 • $9.20B total & $11.74B quantity
 • Estimating change negative

Cost Growth Factors

• Unadjusted for quantity Δ
 – Then-year dollars
 ➢ $23.28B/$14.08B = 1.65
 – Base-year dollars
 ➢ $14.11B/$9.01B = 1.57

• Adjusted for quantity Δ, using OSD methodology
 – Then-year dollars
 ➢ $23.28B/($14.08B + $11.74B) = 0.90
 – Base-year dollars
 ➢ $14.11B/($9.01B + $5.49B) = 0.97
Provenance of Baseline Estimates

Analysis of Deltas

<table>
<thead>
<tr>
<th>SAR BE</th>
<th>Program Office's Acquisition Cost Estimate</th>
<th>ICE (CAIG for ID; NCCA for IC)</th>
<th>Ratio of POACE to SAR BE</th>
<th>Ratio of POACE to SAR BE</th>
<th>Ratio of ICE to SAR BE</th>
<th>Ratio of ICE to SAR BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>in BY$</td>
<td>in TY$</td>
<td>in BY$</td>
<td>in TY$</td>
<td>in BY$</td>
<td>in TY$</td>
<td>in BY$</td>
</tr>
<tr>
<td>$2,877</td>
<td>$3,093</td>
<td>$2,817</td>
<td>$3,032</td>
<td>$3,130</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>$4,123</td>
<td>$4,310</td>
<td>$4,123</td>
<td>$4,104</td>
<td>$4,740</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$45,633</td>
<td>$71,081</td>
<td>$45,500</td>
<td>$8,400</td>
<td>$8,580</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>$26,494</td>
<td>$31,429</td>
<td>$24,490</td>
<td>$26,810</td>
<td>$26,100</td>
<td>0.92</td>
<td>1.01</td>
</tr>
<tr>
<td>$31,548</td>
<td>$36,296</td>
<td>$32,800</td>
<td>$39,100</td>
<td>$39,100</td>
<td>1.04</td>
<td>1.24</td>
</tr>
<tr>
<td>$10,627</td>
<td>$11,425</td>
<td>$10,727</td>
<td>$3,505</td>
<td>$3,505</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>$43,490</td>
<td>$46,826</td>
<td>$43,000</td>
<td>$4,349</td>
<td>$4,349</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$4,263</td>
<td>$4,890</td>
<td>$4,245</td>
<td>$3,019</td>
<td>$3,284</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>$2,977</td>
<td>$3,290</td>
<td>$3,019</td>
<td>$3,284</td>
<td>$3,505</td>
<td>1.01</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Means = 0.99 0.98 1.07 1.03

1.03 without outlier

Comparisons based on available data for cost estimates of recent vintage (1990 and later)

- 6 ACAT ID programs (OSD CAIG ICE)
- 4 ACAT IC programs (NCCA ICE)
Sample Data at MS B

n = 50

Database Elements

- **Base year, baseline type, platform type**
 - Base Year \quad Then Year \quad Quantity
- **Baseline Estimate**
 - Base Year \quad Then Year \quad Quantity
- **Changes to Date**
 - Base Year \quad Then Year \quad Quantity
- **Current Estimate**
 - Base Year \quad Then Year \quad Quantity
- **Quantity Changes**
 - Base Year \quad Then Year \quad
- **Date of last SAR**

Sample Data at MS B

- F/A-18 E/F
- JSOW
- Expeditionary Fighting Vehicle (formerly AAAV)
- MIDS - Low Volumne Terminal (LVT)
- Cooperative Engagement
- F-14D
- H-1 UPGRADES
- MH-60S
- TACTICAL TOMAHAWK
- MH-60R
- E-2D Advanced Hawkeye
- EA-18G (Electronic Attack)
- COBRA JUDY REPLACEMENT
- P-8A
- Mobile User Objective System (MOUS)
- SM-6
- AGM-88E AARGM

DDG-51 Destroyers (Arleigh Burke Class)
DDG-1000 Destroyers (Zumwalt Class)
CVN-78 Aircraft Carriers (Gerald R. Ford Class)
LPD-17 Amphibious Transport Dock (San Antonio Class)
LHA-6 Amphibious Assault Ships (America Class)
SSN-774 Attack Submarines (Virginia Class)
LHD-1
CG-47
SSN-688 Submarines
Strategic Sealift
FFG-7
AN/BSY-1 (Submarine Advanced Combat System; SUBACS)
Airborne Self Protection Jammer (ASPJ)
AV-8B
C/MH-53E
E-6A
F-14A
MS B: All Programs

All DON MDAPs at MS B

- Distribution skewed to right
- Adjustments for changes in quantity and inflation decrease values of CGFs and CVs
- CVs sensitive to outliers
 - E.g., removing Harpoon decreases quantity-adjusted TY$ CV to 0.45
 - 2nd oldest datum (1970 baseline)

| Cost Growth Factors & CVs for All DON MDAPs at MS B for 1969 & Later; n = 50 |
|---|---|---|---|
| Statistics | (Without Qty Adjustment) | (Quantity Adjusted) |
| Mean | 1.48 | 1.84 | 1.23 | 1.36 |
| Standard Deviation | 0.94 | 1.60 | 0.44 | 0.69 |
| CV | 0.63 | 0.87 | 0.36 | 0.51 |

Acquisition Cost Growth from MS B for "All" DON MDAPS
(Quantity Adjusted in Then-Year Dollars)

Median CGF = 1.18
Mean CGF = 1.36
CV = 51%
Comparison with “All DON”

- Median CGF = (1.18, 1.12)
- Mean CGF = (1.36, 1.30)
- CV = (51%, 45%)

Cost Growth Factors & CVs for Ship & Sub MDAPs at MS B; n = 11

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(Without Qty Adjustment)</th>
<th>(Quantity Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base-Year$</td>
<td>Then-Year$</td>
</tr>
<tr>
<td>Mean</td>
<td>1.78</td>
<td>2.17</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.95</td>
<td>1.38</td>
</tr>
<tr>
<td>CV</td>
<td>0.54</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Acquisition Cost Growth from MS B for Ships & Submarines

(Quantity Adjusted in Then-Year Dollars)

- Median CGF = 1.12
- Mean CGF = 1.30
- CV = 45%

MS B: Ships and Submarines
MS B: Aircraft

Comparison with All DON, Ships

- Median CGF = (1.18, 1.12, 1.19)
- Mean CGF = (1.36, 1.30, 1.43)
- CV = (51%, 45%, 44%)

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(Without Qty Adjustment)</th>
<th>(Quantity Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-Year$</td>
<td>Then-Year$</td>
<td>Base-Year$</td>
</tr>
<tr>
<td>Mean</td>
<td>1.55</td>
<td>2.03</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.89</td>
<td>1.87</td>
</tr>
<tr>
<td>CV</td>
<td>0.57</td>
<td>0.92</td>
</tr>
</tbody>
</table>
MS B: Missiles

Comparison with All DON, Ships, Aircraft

- Median CGF = (1.18, 1.12, 1.19, 1.19)
- Mean CGF = (1.36, 1.30, 1.43, 1.37)
- CV = (51%, 45%, 44%, 70%)

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(Without Qty Adjustment)</th>
<th>(Quantity Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.44</td>
<td>1.94</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.19</td>
<td>1.93</td>
</tr>
<tr>
<td>CV</td>
<td>0.82</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Acquisition Cost Growth at MS B for Missiles
(Quantity Adjusted in Then-Year Dollars)

Median CGF = 1.19
Mean CGF = 1.37
CV = 70%

Without HARPOON (CGF = 3.96), CV = 47%
Comparison with All DON, Ships, Aircraft, Missiles

- Median CGF = (1.18, 1.12, 1.19, 1.19, 1.19)
- Mean CGF = (1.36, 1.30, 1.43, 1.37, 1.29)
- CV = (51%, 45%, 44%, 70%, 47%)

| Cost Growth Factors & CVs for Electronics & Other MDAPs at MS B; n = 11 |
|---|-----------------|-----------------|
| Statistics | (Without Qty Adjustment) | (Quantity Adjusted) |
| Mean | 1.14 | 1.14 |
| Standard Deviation | 0.67 | 0.69 |
| CV | 0.59 | 0.61 |

Acquisition Cost Growth at MS B for Electronics & Other
(Quantity Adjusted in Then-Year Dollars)

Median CGF = 1.19
Mean CGF = 1.29
CV = 47%
Hypothesis Testing for MS B

Hypothesis

- Homogeneity of CGF means
 - H_0: $\mu_1 = \mu_2 = \ldots = \mu_k$, where μ_i is a platform population mean CGF
 - H_a: $\mu_i \neq \mu_j$, for at least one (i,j) pair
 - $F_{(3,45)} = 0.12$ (from ANOVA)
 - Implies that variation in platform-level sample means is not, at the 5% level of significance, statistically distinguishable from noise

![Means & Spreads of CGFs from MS B](image)
Hypothesis Testing for MS B

Hypothesis

• Homogeneity of CGF variances

 ▪ $H_0: \sigma^2_1 = \sigma^2_2 = \ldots = \sigma^2_k$, where σ^2_i is a platform population variance CGF

 ▪ $H_a: \sigma^2_i \neq \sigma^2_j$, for at least one (i,j) pair

 ▪ Statistical tests:
 ▪ Pairwise comparisons
 ▪ Levene test for k samples

Test Results

• Pairwise comparisons

 – In all cases, H_0 is not rejected at 5% level of significance

• Levene’s test

 ▪ For skewed distributions

 ▪ $F_{(3,47)} = 0.46$ versus critical value of 4.23; H_0 not rejected

• In both cases, platform-level sample variances not statistically distinguishable from noise

Homogeneous means and variances strongly support the conjecture of homogeneous CVs
Other Findings for MS B

• CVs decline monotonically with adjustments
 – 15 percentage points for inflation, after quantity adjustment
 • Perhaps due to volatility of average annual rates during the Nixon/Ford (6.5%), Carter (10.7%), Reagan (4.0%), G.H.W. Bush (3.9%), and Clinton (2.7%) administrations
Other Findings for MS B

Secular decline in CVs

- Especially in TY$
 - Less drop in BY$

- Inflation stability
 - After the turmoil of the late 1970s
 - Less variance and greater accuracy in OMB rates
 - Less CV (TY$ to BY$)
 - Unclear if trend will continue in long run

- Caution:
 - Confidence lessens as sample size decreases
Sample Data at MS C

All DON MDAPs at MS C

- PdE represents estimated total program acquisition cost
 - Includes sunk R&D and MILCON costs
- Roughly 20% had a DE, too

| DDG-51 Destroyers (Arleigh Burke Class) |
| CVN-77 (1 ship) from CVN-68 Aircraft Carriers (Nimitz Class) |
| T-AKE Dry Cargo/Ammunition Ships (Lewis and Clark Class) |
| AOE-6 |
| CVN-72/73 |
| CVN-74/75 |
| Landing Craft Air Cushion |
| LSD-41 Landing Ship Dock |
| LSD-49 Landing Ship Dock |
| MCM-1 Mine Counter |
| TAO-187 Fleet Oiler |
| Trident II Submarines |
| CVN-76 |
| MHC-51 Mine Hunter |
| T-AGOS |
| CVN-68 Class (two ships) |
| CVN-68 Class (one ship) |
| Battleship Reactivation |
| SSN-21 & AN/BSY-2 |
| A-6E/F |
| AN/SQQ-89 Anti-Submarine |
| E-2C |
| EA-6B |
| F-14D |
| MK-48 ADCAP |
| P-3C |
| PHALANX CIWS |
| T-45TS |
| TRIDENT II MISSILE |
| V-22 |
| UHF FOLLOW-ON |
| ROTH (Relocatable Over the Horizon Radar) |
| F/A-18 E/F |
| JSOW Baseline/Unitary-108 |
| MIDS - Low Volume Terminal (LVT) |
| Navy EHF Satellite Communications Program (NESP) |
| AV-8B REMANUFACTURE |
| Cooperative Engagement Capability (CEC) |
| E-2C REPRODUCTION |
| MH-60S |
| TACTICAL TOMAHAWK |
| MH-60R |
| EA-18G (Electronic Attack - 18G Growler) |
MS C: All Programs

All DON MDAPs at MS C

- CVs uniformly lower
- Cost growth factors less compared to DE values
 - Mean (1.10 versus 1.36)
 - Median (1.07 versus 1.18)
 - Similar trend for the 9 programs with both DEs and PdEs
- Distribution less skewed

Cost Growth Factors & CVs for All DON MDAPs at MS C for 1969 & Later; n = 43

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(Without Qty Adjustment)</th>
<th>(Quantity Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base-Year$</td>
<td>Then-Year$</td>
</tr>
<tr>
<td>Mean</td>
<td>1.11</td>
<td>1.08</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.50</td>
<td>0.58</td>
</tr>
<tr>
<td>CV</td>
<td>0.45</td>
<td>0.53</td>
</tr>
</tbody>
</table>

CVs for Total Acquisition Cost: MS B and MS C

- CVs from MS B: 0.87, 0.63, 0.51, 0.36
- CVs from MS C: 0.53, 0.45, 0.26, 0.19

Acquisition Cost Growth from MS C for "All" DON MDAPS

(Quantity Adjusted in Then-Year Dollars)

- Median CGF = 1.07
- Mean CGF = 1.10
- CV = 26%
Comparison with “All DON”

- Median CGF = (1.07, 1.05)
- Mean CGF = (1.10, 1.07)
- CV = (26%, 22%)

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(Without Qty Adjustment)</th>
<th>(Quantity Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base-Year$</td>
<td>Then-Year$</td>
</tr>
<tr>
<td>Mean</td>
<td>1.15</td>
<td>1.12</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.59</td>
<td>0.74</td>
</tr>
<tr>
<td>CV</td>
<td>0.52</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Acquisition Cost Growth from MS C for Ships & Submarines

(Quantity Adjusted in Then-Year Dollars)

- Median CGF = 1.05
- Mean CGF = 1.07
- CV = 22%
MS C: Aircraft

Comparison with All DON, Ships

- Median CGF = (1.07, 1.05, 1.08)
- Mean CGF = (1.10, 1.07, 1.12)
- CV = (26%, 22%, 36%)

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Base-Year$</th>
<th>Then-Year$</th>
<th>Base-Year$</th>
<th>Then-Year$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.17</td>
<td>1.08</td>
<td>1.15</td>
<td>1.12</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.44</td>
<td>0.39</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>CV</td>
<td>0.38</td>
<td>0.36</td>
<td>0.27</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Acquisition Cost Growth from MS C for Aircraft
(Quantity Adjusted in Then-Year Dollars)

- Median CGF = 1.08
- Mean CGF = 1.08
- CV = 36%
Comparison with All DON, Ships, Aircraft

- Median CGF = (1.07, 1.05, 1.08, 1.12)
- Mean CGF = (1.10, 1.07, 1.12, 1.12)
- CV = (26%, 22%, 36%, 16%)

CV falls to 22% without EA-6B outlier

Insufficient sample sizes for missiles and electronics

MS C: “Other”

Acquisition Cost Growth from MS C for "Other"
(Quantity Adjusted in Then-Year Dollars)

Median CGF = 1.12
Mean CGF = 1.12
CV = 16%

Cost Growth Factors & CVs for "Other" MDAPs at MS C; n = 11

<table>
<thead>
<tr>
<th></th>
<th>Statistics</th>
<th>(Without Qty Adjustment)</th>
<th>(Quantity Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base-Year$</td>
<td>Then-Year$</td>
<td>Base-Year$</td>
</tr>
<tr>
<td>Mean</td>
<td>0.99</td>
<td>1.00</td>
<td>1.07</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.39</td>
<td>0.45</td>
<td>0.16</td>
</tr>
<tr>
<td>CV</td>
<td>0.40</td>
<td>0.45</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Sample Median
and Mean

ROTMR
Navy EHF Satellite

Trident II Missile
Tactical Tomahawk

AN/SQQ-89
MK-48 ADCAP
PHALANX CIWS
UHF Follow-On

JSOW Baseline/Unitary
MIDS
Cooperative Engagement Capability

< 0.75 0.75 - 1.00 1.01 - 1.25 1.26 - 1.50 1.51 - 1.75 1.76 - 2.00 2.01 - 2.25

Cost Growth Factor (Current Estimate/Baseline Estimate)
Hypothesis Testing for MS C

Hypothesis

• Homogeneity of CGF means
 • H_0: $\mu_1 = \mu_2 = \ldots = \mu_k$, where μ_i is a platform population mean CGF
 • H_a: $\mu_i \neq \mu_j$, for at least one (i,j) pair
 • $F_{(2,40)} = 0.16$ (from ANOVA)
 ➢ Implies that variation in platform-level sample means is not, at the 5% level of significance, statistically distinguishable from noise

Means & Spreads of CGFs from MS C
(Quantity Adjusted in Then-Year$)

<table>
<thead>
<tr>
<th>Category</th>
<th>Sample σ^2</th>
<th>Sample σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ships & Subs</td>
<td>0.06</td>
<td>1.07</td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.16</td>
<td>1.12</td>
</tr>
<tr>
<td>Other</td>
<td>0.03</td>
<td>1.12</td>
</tr>
</tbody>
</table>
Hypothesis Testing for MS C

Hypothesis

- Homogeneity of CGF variances
 - \(H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2 \) where \(\sigma_i \) is a platform population variance CGF
 - \(H_a: \sigma_i^2 \neq \sigma_j^2 \), for at least one \((i,j)\) pair

- Statistical tests:
 - Pairwise comparisons
 - Levene test for \(k \) samples

Test Results

- Mixed
 - Pairwise comparisons
 - \(H_0 \) rejected for aircraft/ships and aircraft/other
 - Due solely to EA-6B outlier
 - Levene’s test
 - For skewed distributions
 - \(F_{(2,38)} = 0.54 \) versus critical value of 3.25; \(H_0 \) not rejected
 - On balance, deltas in sample variances not distinguishable from noise

<table>
<thead>
<tr>
<th>Sample Pairwise F Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platforms</td>
</tr>
<tr>
<td>Ships and Subs</td>
</tr>
<tr>
<td>Aircraft</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Homogeneous means and some evidence of homogeneous variances support the conjecture of homogeneous CVs
Other Findings for MS C

Secular decline in CVs

• In both TY$ and BY$
 – Compared to MS B results:
 • Fewer older programs
 • Less inflation impact

• Hypotheses
 – Better estimating
 – Increased program stability
 – Stronger link to ICEs

• Caution: confidence lessens as sample size decreases

![Secular Trends in CVs from MS C]

- Quantity Unadjusted
- Quantity Adjusted

- 1978 (1 datum) & => 1980s; n = 43
- => 1990; n = 20

8 percentage points of CV versus 4 points for 1990s & later
Other Findings: MS A

CVs at MS A

- Insufficient sample size for sound inferences
 - CV of 49% (TYS; quantity-adjusted)
 - Median CGF of 1.65

- Alternative
 - Use MS B-to-C delta as analogy to MS A-to-B delta
 - Assumes equal degree of cost uncertainty and risk between milestones
 - For equal sample time periods, delta ~ 15 percentage points in CV
Summary of Findings

Conjectures

• Estimation Consistency
 – CVs from ICEs jibe with acquisition experience
 • Ad hoc observation suggests underestimation of CVs, at times, in the international defense community

• Decline During Acquisition
 – CVs decrease throughout acquisition lifecycle
 • Strongly supported (MS B to MS C)

• Platform Homogeneity
 – CVs equivalent for aircraft, ships, and other platform types
 • Strongly supported, especially for MS B

Conjectures

• Adjustment Decline
 – CVs decrease when adjusted for changes in quantity and inflation
 • Strongly supported

• Secular Invariance
 – CVs steady long-term
 • Rejected
 • Evidence of secular decline
 • However, small sample sizes lessen confidence
Policy Considerations

General

- **Type of CV to employ**
 - Perhaps quantity adjusted in TY$ is best

 - Many programs using non-OSD inflation rates

 - Quantity deltas influenced by JCIDS and Congress

- **Possibility of structural change**
 - For example,

 - WSARA; systems engineering early on; competitive prototyping; affordability as a KPP; should-cost studies; budgeting to SCPs; capability/cost tradeoffs

- Uncertain effect on CGFs & CVs

Benchmark CVs

- **View of long-term inflation**
 - Instability would argue for inclusion of data from 1970s

 - Stability would argue against
Operational Construct

Options for “trigger values” requiring an explanation
• Use historical range
• Use fixed percentage from endpoints
• Use confidence intervals
Operational Construct

Confidence Intervals

• Assumptions
 – Lognormal distribution at MS B
 – Normal distribution at MS C

• Data from 1980s and later
 – Other confidence intervals available
 • E.g., MS B, using all sample data
 • 0.42, 0.51, 0.66 for lower bound, mean, and upper bound

95% Confidence Intervals for CVs
(Quantity-Adjusted; TY$; Data => 1980s)

Estimated from historical data
Estimated by analogy

<table>
<thead>
<tr>
<th>Coefficient of Variation</th>
<th>MS A</th>
<th>MS B</th>
<th>MS C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.42</td>
<td>0.74</td>
<td>0.54</td>
<td>0.34</td>
</tr>
<tr>
<td>0.51</td>
<td>0.41</td>
<td>0.31</td>
<td>0.21</td>
</tr>
<tr>
<td>0.66</td>
<td>0.21</td>
<td>0.34</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Case Study #1

NATO Alliance Ground Surveillance System
NATO AGS Program
ICE Methodology

Based on DON Cost Estimating Guide

1.1 Establish Needs with Stakeholders
Activities:
- Define purpose and scope
- Manage expectations

OUTPUT
- Plan of Action and Milestones
- Stakeholder Consensus
- Cost Team Formation

1.4 Conduct Risk & Uncertainty Analysis
Activities:
- Generate probability distribution for total cost
- Select mean, median, or other point for best estimate

1.5 Verify and Validate Estimate
Activities:
- Perform top-level reasonableness checks

OUTPUT
- Life-Cycle Estimate
- Funding Assessment

1.2 Establish a Program Baseline
Activities:
- Review Cost Analysis Requirements Description (CARD) or CARD-like documents
- Identify cost drivers (e.g., speed, weight, SLOC)
- Identify risk areas

OUTPUT
- Technical Baseline
- Ground Rules
- Risk Areas

1.3 Develop Baseline Cost Estimate
Activities (often iterative):
- Select methods and models
- Collect, normalize, and analyze data
- Develop CERs and analyze risk and uncertainties at the cost-element level
- Develop aggregate cost model

OUTPUT
- CERs
- Cost Model

1.6 Present & Defend Estimate
Activities:
- Develop briefings
- Present estimate to customers

OUTPUT
- Briefing
- Documentation
- SCP

Buy-in from NATO, OSD(CAPE), USD(AT&L), AGS Board of Directors, and “Program Office”; formal ICE development plan with signatures

Site visits to NATO AGS Management Agency and Northrop Grumman

NATO’s SAS-076 Task Group

January 2011 meeting in Brussels
Cost Element Structure

<table>
<thead>
<tr>
<th>Numeric Element</th>
<th>Cost Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>NATO AGS UAV System</td>
</tr>
<tr>
<td>1.1</td>
<td>Air Vehicle</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Airframe</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Wing</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Fuselage</td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>Empennage</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>Subsystems</td>
</tr>
<tr>
<td>1.1.1.4.1</td>
<td>Nacelle</td>
</tr>
<tr>
<td>1.1.1.4.2</td>
<td>Fairings</td>
</tr>
<tr>
<td>1.1.1.4.3</td>
<td>Landing Gear + "Other"</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Propulsion</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Communications</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>DataLinks</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Satellite Communications</td>
</tr>
<tr>
<td>1.1.3.2.1</td>
<td>KU Satellite Radio</td>
</tr>
<tr>
<td>1.1.3.2.2</td>
<td>Satellite Communications (SATCOM) Voice</td>
</tr>
<tr>
<td>1.1.3.2.3</td>
<td>International Maritime SATCOM</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>UHF/VHF Communications</td>
</tr>
<tr>
<td>1.1.3.3.1</td>
<td>UHF/VHF Radios</td>
</tr>
<tr>
<td>1.1.3.3.2</td>
<td>UHF Demand Assigned Multiple Access SATCOM</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Navigation / Guidance</td>
</tr>
<tr>
<td>1.1.4.1</td>
<td>(2) Global Positioning Systems</td>
</tr>
<tr>
<td>1.1.4.2</td>
<td>OmniStar Differential Global Positioning System (DGPS)</td>
</tr>
<tr>
<td>1.1.4.3</td>
<td>IFF Transponder/ Traffic Alert & Collision (TCAS-II)</td>
</tr>
<tr>
<td>1.1.4.4</td>
<td>Worldwide Operations Hardware Suite</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Central Computer</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Auxiliary Equipment</td>
</tr>
<tr>
<td>1.1.7</td>
<td>Integration, Assembly, Test & Checkout</td>
</tr>
<tr>
<td>1.2</td>
<td>Payloads</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Reconnaissance</td>
</tr>
<tr>
<td>1.2.1.3</td>
<td>MP-RTIP</td>
</tr>
<tr>
<td>1.2.2</td>
<td>NATO AGS Unique</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Electronic Support Measures (ESM)</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Radar Warning Receiver (RWR)</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>IFF Interogator</td>
</tr>
<tr>
<td>1.3</td>
<td>Ground/Support Segment</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Hardware</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Command and Control (C2) Unit</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Mobile General Ground Stations</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>Mobile General Communications Stations</td>
</tr>
<tr>
<td>1.3.1.4</td>
<td>Transportable General Ground Stations</td>
</tr>
<tr>
<td>1.3.1.5</td>
<td>Remote Workstations</td>
</tr>
<tr>
<td>1.3.1.6</td>
<td>UAV Flight Trainers</td>
</tr>
<tr>
<td>1.3.1.7</td>
<td>Deployable Ground Station Trainers</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Software Development</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Air Vehicle/Payload</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Mission Operations Support</td>
</tr>
<tr>
<td>1.3.2.3</td>
<td>Transportable General Ground Stations</td>
</tr>
<tr>
<td>1.3.2.4</td>
<td>Mobile General Ground Stations</td>
</tr>
<tr>
<td>1.3.2.5</td>
<td>Mobile General Communications Stations</td>
</tr>
<tr>
<td>1.3.2.6</td>
<td>CSOP</td>
</tr>
<tr>
<td>1.3.2.7</td>
<td>UAV Command and Control</td>
</tr>
<tr>
<td>1.3.2.8</td>
<td>System Integration and Testing</td>
</tr>
<tr>
<td>1.4</td>
<td>Systems Engineering / Program Management</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Systems Engineering (SE)</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Program Management (PM)</td>
</tr>
<tr>
<td>1.5</td>
<td>Systems Test & Evaluation</td>
</tr>
<tr>
<td>1.6</td>
<td>Training</td>
</tr>
<tr>
<td>1.7</td>
<td>Data</td>
</tr>
<tr>
<td>1.8</td>
<td>Peculiar Support Equipment</td>
</tr>
<tr>
<td>1.9</td>
<td>Common Support Equipment</td>
</tr>
<tr>
<td>1.10</td>
<td>Operational / Site Activation</td>
</tr>
<tr>
<td>1.11</td>
<td>Industrial Facilities</td>
</tr>
<tr>
<td>1.12</td>
<td>Initial Spares and Repair Parts</td>
</tr>
<tr>
<td>Add-on</td>
<td>General and Administrative</td>
</tr>
<tr>
<td>Facilities</td>
<td>Facilities Capital Cost of Money</td>
</tr>
<tr>
<td>Profit</td>
<td>Profit</td>
</tr>
</tbody>
</table>
ICE Methodology

Unadjusted Point Estimate

<table>
<thead>
<tr>
<th>Air Vehicle</th>
<th>Support Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Global Hawk Block 30 and 40 actuals</td>
<td>– Global Hawk actuals</td>
</tr>
<tr>
<td>• Learning curves</td>
<td></td>
</tr>
<tr>
<td>• Averages</td>
<td></td>
</tr>
<tr>
<td>Payload (MP RTIP)</td>
<td>G&A, FCCM, & Fee</td>
</tr>
<tr>
<td>– Analogy to AESA</td>
<td>– Global Hawk actuals</td>
</tr>
<tr>
<td>Ground Segment</td>
<td></td>
</tr>
<tr>
<td>– Analogies for hardware</td>
<td></td>
</tr>
<tr>
<td>– CERs for software development</td>
<td></td>
</tr>
<tr>
<td>• Manmonths</td>
<td></td>
</tr>
<tr>
<td>• Burdened salaries from Eurohawk</td>
<td></td>
</tr>
</tbody>
</table>
Notional Quantity Profile

- NATO AGS’s position on learning curve influenced by
 - U.S. Global Hawk production
 - BAMS development and production

![Cumulative Block 30 & 40 Air Vehicles](image)

<table>
<thead>
<tr>
<th>Buy Year; TOA Funding</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Global Hawk LRIP</td>
<td></td>
</tr>
<tr>
<td>Block 10 Aircraft</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block 20 Aircraft</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block 30 Aircraft</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block 40 Aircraft</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DON BAMS</td>
<td></td>
</tr>
<tr>
<td>SDD Units</td>
<td></td>
</tr>
<tr>
<td>LRIP</td>
<td></td>
</tr>
<tr>
<td>APN</td>
<td></td>
</tr>
<tr>
<td>NATO AGS</td>
<td></td>
</tr>
<tr>
<td>Assumption #1:</td>
<td></td>
</tr>
<tr>
<td>Design, Development, & Qualification Production</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: AGS scheduled has slipped
Example: Airframe Wing

- Wing fabrication, assembly, structural testing
 - Graphite & epoxy materials; high-modulus unidirectional tape
 - Vought Aircraft Industries
- Unit-learning curve; yields *median* value

![Graph showing estimated unit cost (FY10$M) of airframe wing.](image)

Estimated Unit Cost (FY10$M) of Airframe Wing

\[
\hat{Y} = 7.463 \times (\text{Lot-Midpoint Quantity})^{-0.096} ; R^2 = 0.9 ; F = 69
\]

(t = 525) (t = -8.3)

Lot-Midpoint Quantity

Actual Unit

Estimated Unit Costs

Learning-curve slope = 94%
Example: Airframe Fuselage

- Northrop Grumman’s Unmanned Systems Center
 - Moss Point, Mississippi
- Fabrication and mating of fore, mid, and aft of fuselage
- Cost estimated using unit-learning curve

![Graph showing estimated and actual unit costs over different lots and fiscal years. The formula $\hat{Y} = 1.350 \times (\text{Lot-Midpoint Quantity})^{0.11}$ is given with $R^2 = 0.9$, $F = 6.2$, and the learning curve slope is 93%.](image-url)
AGS Risk Elements

Elements of Risk

- Exchange rate
 - Swing of 93% from low to high: $0.83/€ to $1.60/€ in 2008

- Inflation
 - Could accelerate with economic growth

- Affordability
 - Ceiling price denominated in 2007 base-year Euros
 - Many countries have dropped out

- Schedule
 - Slipped already

- Software development
 - xx M ESLOC
 - Large from U.S. perspective
 - Includes requirement for user exploitation elements (mobile and transportable ground stations) covered by DCGS in U.S. for GH

- Radar
 - R&D problems could translate into higher production costs

- International Participation
 - “Best value,” but each nation demands work
Exchange Rate

“Random Walk” Theory

• Phrase coined by Karl Pearson in 1905
 – Trajectory based on successive random steps
 – 1st order Markov chain
Inflation Rate

Threat of Rising Rates

- 3.0 %/yr as baseline
- Economic recovery gaining traction
 - North America and Europe
 - Inflation in Euro zone at two-year high of 2.2% (above 2.0% ECB target)
 - Food, energy, raw materials
 - Risk of second-round effect on wages
 - Aerospace inflation higher than in general economy
Affordability

FFP Ceiling in 2007 Euros

- PMOU required years to negotiate
- 50% participation in AGS
 - Down from high of 23 out of 26 nations
- Mixed fleet scrapped in 2007
 - Modified Airbus A320 and Global Hawk UAVs
 - Too expensive
- Schedule delays increase costs in then-year US$, Canadian$, and Euros
Software Development

Highest-Risk Element

- Growth in ESLOC
 - Requirements
- Configuration Management
 - Across many companies
 - Different levels of CMMI certification
- Integration of Components
 - Software modules
 - Hardware with software
 - Other ISR assets and with intelligence gathering and analysis systems (e.g., MAGIC)

Growth in Count of ESLOC

Median CGF = 1.14
Mean CGF = 1.73
CV = 95%

“The first 90% of the code accounts for the first 90% of the development time. The remaining 10% of the code accounts for the other 90% of the development time.”

(Tom Cargill)
Software Development

Highest-Risk Element

• Demand for “Noble Work”
 – Software versus laying coaxial cable
 • Knowledge gain
 • Leverage for follow-on work
 • NATO owns design but not code

• Schedule for MOB Development
 – Test facilities and equipment for software
International Participation

Prime: Northrop Grumman Integrated Systems Sector International, Inc

<table>
<thead>
<tr>
<th>Prime</th>
<th>2nd Level Subs</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGISSII USA</td>
<td>Northrop Grumman Systems Corp (NGSC)</td>
<td>USA</td>
</tr>
<tr>
<td></td>
<td>CASSIDIAN (EADS)</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td>Potential subs to Cassidian: Retia ICZ (Czech Republic); Aktors (Estonia); Dati (Latvia); Elsis (Lithuania); Konstrukta (Slovakia); Hermes Soft Lab (Slovenia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selex Galileo</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>General Dynamics Canada</td>
<td>Canada</td>
</tr>
<tr>
<td></td>
<td>Kongsberg</td>
<td>Norway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Level Subs Nations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
</tr>
<tr>
<td>Czech Republic</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>Estonia</td>
</tr>
<tr>
<td>Latvia</td>
</tr>
<tr>
<td>Lithuania</td>
</tr>
<tr>
<td>Luxemburg</td>
</tr>
<tr>
<td>Romania</td>
</tr>
<tr>
<td>Slovakia</td>
</tr>
<tr>
<td>Slovenia</td>
</tr>
</tbody>
</table>
AGS CV and Scenarios

Choice of CV

• AGS a NATO rather than U.S. acquisition program. But,
 – Direct commercial sale to Northrop Grumman
 • Total System Performance Responsibility
 – Based on U.S. Global Hawk
 – Most of costs to be incurred in U.S.

• Many risk elements
 – Therefore, robust CV of 51% used
 • Quantity-adjusted in then-year dollars (and Euros)
 • Based on complete sample at MS B

Scenarios

• Baseline
 – Mostly likely

• Pessimistic
 – Unfavorable yet plausible

• Resource-Constrained
 – To meet ceiling price
Scenario Parameters

<table>
<thead>
<tr>
<th>Elements</th>
<th>Baseline</th>
<th>Pessimistic</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange rate</td>
<td>$1.35 per €</td>
<td>$x.xx per €</td>
<td>$x.xx per €</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>3.00%</td>
<td>x%</td>
<td>x%</td>
</tr>
<tr>
<td>Quantities/Schedule</td>
<td>FY11 FY12 FY13 FY14 FY15</td>
<td>slip in schedule</td>
<td>change in quantities and schedule</td>
</tr>
<tr>
<td>UAVs</td>
<td>2 2 2 2 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Stations</td>
<td>1 1 1 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportable</td>
<td>2 3 3 3 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>2 2 2 2 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESLOC Count</td>
<td>No growth</td>
<td>x% increase</td>
<td>No growth</td>
</tr>
<tr>
<td>Radar</td>
<td>91% learning</td>
<td>x% learning</td>
<td>91% learning</td>
</tr>
<tr>
<td>Int'l Participation</td>
<td>Built-in redundancy</td>
<td>x% delta to SE/PM</td>
<td>Built-in redundancy</td>
</tr>
<tr>
<td>Affordability</td>
<td>Unconstrained</td>
<td>Unconstrained</td>
<td>Constrained</td>
</tr>
</tbody>
</table>
S-Curve for NATO AGS

Estimated Acquisition Cost of NATO AGS

- **Baseline Scenario**
 - $1.35 per Euro
 - No growth in ESLOC; learning on MR-RTIP
 - Inflation at 3%; no delta for NATO work

- **Pessimistic Scenario**
 - $x.xx per Euro
 - x% growth in ESLOC
 - x% learning on MP-RTIP
 - Cost delta for NATO work
 - Inflation at x% per year

Estimated Acquisition Cost in Billions of Then-Year Euros

Cost values not displayed because of business sensitivity
S-Curve for NATO AGS

• Hypothetical Option
 – CV of 10%
 – Pessimistic estimate
 • Five in one million chance of costs reaching that level or higher!
 – Deceives stakeholders
 • Underestimates probability

• Take away
 – Essential to use benchmark data
 – Perform “deep dive”

Estimated Acquisition Cost of NATO AGS

Baseline Scenario
- $1.35 per Euro
- No growth in ESLOC; learning on MR-RTIP
- Inflation at 3%; no delta for NATO work

Pessimistic Scenario
- $x.xx per Euro
- x% growth in ESLOC
- x% learning on MR-RTIP
- Cost delta for NATO work
- Inflation at x% per year

23% probability of cost increase

10% CV yields estimate at 99.9995 Cum Percentile

Cost values not displayed because of business sensitivity
S-Curve Tool

- Excel based
 - Reflects historical CVs and Cost Growth Factors (CGFs)
 - Supports both
 • Monte Carlo simulation
 • eSBM

- Allows practitioners to
 - Perform internal V&V
 • Compare their estimated S-curves to curves using benchmark CVs and CGFs
 - Perform assessments and reconciliations
 • Compare ICE and Program Office S-curves
 - Generate graphics

- eSBM POC
 - Dr. Paul Garvey, MITRE

- Tool POCs
 - Mr. Peter Braxton
 - Mr. Richard Lee

- Tool and eSBM paper on NCCA’s website
 - At www.ncca.navy.mil
Backup
CVs: Calculation Issue

• “... a central issue of risk analysis:
 – We are trying to characterize within-program risk
 • But “Cost is an unrepeateable experiment,” and we only ever get one observation for each historical program
 – Thus, we are stuck using data from cross-program risk
 – We must cleverly devise a model that explains the former, while using historical data from the latter”

“The Perils of Portability: CGFs and CVs,”
Peter J. Braxton, Richard C. Lee, Kevin M. Cincotta, Jack Smuck, Megan Guild, and Richard L. Coleman;
SCEA/ISPA Conference 2011
Translation of BY$ CGFs Into Costs

Sequence of 50 BY$ CGFs: \(\text{CE/BE}_{1,1984}, \text{CE/BE}_{2,1978}, \text{CE/BE}_{3,1986}, \ldots, \text{CE/BE}_{50,2004} \)

where \(i,j = \) observation number, base year of numerator and denominator

Steps:

– Inflate each ratio to common year (e.g., FY2010)

– Normalize CGFs to mean of 1.0
 • \(\text{CE} = \text{BE} \) at the mean

– Each \(\text{CE} \) now interpretable as a cost outcome per dollar of \(\text{BE} \)
 • Same units of measurement
 • Same year dollars

– CV is unchanged
 • Computation also holds for BY$ quantity adjustments

Desirable Statistical Properties:
CV independent of base year
CV independent of unit of measurement

Questionable Statistical Property:
CV invariant with respect to program size

CV of costs & CGFs = 63%
Military Reading List

Nonfiction

• With the Old Breed, E. B. Sledge
 – Wall Street Journal calls this book one of the “top five” ever in describing any battle in the 20th century. A mortarman (MOS 0341) in the First Marine Division gives his account of fighting on the front lines in the Pacific campaigns of Peleliu and Okinawa.

• Unbroken, Laura Hillenbrand
 – The author of “Seabiscuit” chronicles the ordeals of Louis Zamperini, an Olympic miler, who survived incredible hardship and torture when his B-24 Liberator crashed in the South Pacific in WW II.

• Ambush Alley, Tim Pritchard
 – According to many, “the most extraordinary battle of the Iraq war. “

• Inside Delta Force, Eric Haney
 – A gripping account of the formation, operation, and skills of America’s elite counter-terrorism unit.

• Horse Soldiers, Doug Stanton
 – U.S. Special Forces defeat the Taliban in Afghanistan shortly after 9/11.

Fiction

• Ender’s Game, Orson Scott Card
 – Aliens have nearly destroyed the human race in two attacks. Our survival now rests entirely in the hands of a young genius, Ender Wiggin.
 – Officially recommended as “professional reading” by the U.S. Marine Corps.
 – I picked this one up at Quantico.