Inflation and Index Numbers

How to adjust for the general rise in prices over time

“In 1978, a commercial flight between New York and Paris cost around $900 and took seven hours. If the principles of Moore’s Law had been applied to the airline industry the way they have to the semiconductor industry since 1978, that flight would now cost about a penny and take less than one second.”

Inflation Overview

• Key Ideas
 - Inflation = rising prices over time
 - Basket of goods
 - Base-year estimating

• Practical Applications
 - Budget Estimates
 - Custom indices
 - Forward Price Rate Agreements (FPRAs)
 - Price deflation and technology inflation

• Analytical Constructs
 - Exponential functions
 - Growth and decay
 - Compounding
 - Inverse = logarithms
 - Percent rates = factors
 - Geometric and harmonic means
 - Weighted average

• Related Topics
 - Time phasing
 - Budgeting
 - Discounting and Economic Analysis (EA)
Inflation Outline

• Core Knowledge
 - Inflation Concepts
 - Inflation and Cost Estimating
 - Index Numbers
 • Raw Indices
 • Composite Indices
 • Weighted Indices
 - Inflation Tables and Escalation Procedures

• Summary
• Resources
• Related and Advanced Topics

Inflation: Gotta Get It Right!

• Inflation can be taught in many different ways
 - Different agencies and organizations use different terminology
 - Index tables can look very different

• The key concepts of inflation remain the same
• Applying inflation incorrectly or ignoring it can be embarrassing and even fatal to credibility

Tip: While inflation can be difficult, resources are available

VDOT understated project cost estimates by $236.5 million because it did not include estimates for known and planned costs, such as . . . $44 million for inflation.

Audit of the Springfield Interchange Project" (IN-2003-003), Federal Highway Administration, November 22, 2002.
What Is Inflation?

- Inflation is defined as an increase in the volume of money and credit relative to available goods and services resulting in a continuing rise in the general price level.

 - **Inflation** is an external economic effect
 - Not all prices rise at the same rate – in fact, some could fall or stay even.
 - The inflation rate is used to measure this rise (or fall) of the price level.

- **Escalation** is adjusting a dollar amount to account for the effects of inflation.
- **De-escalation** is removing inflation effects from a dollar amount.

Warning:

Inflation and escalation are often used interchangeably.

Inflation and Cost Estimating

- When using historical costs to estimate current or future purchases, costs must be escalated to adjust for change in purchasing power (inflation).
- When developing CERs, historical costs should be represented in one **Constant Year** in order to normalize for inflation.
 - The **Base Year** of the CER

When doing a cost estimate, *like* costs must be used
Base-Year Estimating Paradigm

- Paradigm for estimates that use historical data and span multiple years
- Base-Year Estimating procedure:
 - Adjust all historical data into one Base Year
 - Estimate all costs in this Base Year
 - Time-phase estimate across span of estimated schedule using an expenditure or obligation profile
 - Escalate time-phased estimate to **Current Year** or **Then Year** $ for each individual year
 - Using Raw or Weighted Indices, respectively

Inflation Impacts on Estimates

- Out-year inflation rates are usually estimated assuming constant values for future years’ inflation
 - Often close to the current year’s rate
 - If inflation rates turn out to be *less* (decreasing inflation rates), assuming constant inflation causes estimate to be *too high*
 - If inflation rates turn out to be *greater* (increasing inflation rates), assuming constant inflation causes estimate to be *too low*
- Future inflation rates are themselves estimates
 - Though often taken as a given from sources such as DoD guidance or the Bureau of Labor Statistics (BLS), inflation rates should not be blindly accepted
 - As a cost estimator you should consider their accuracy and adjust accordingly
 - One way to improve inflation accuracy is to create custom indices
 - Another way is to capture the uncertainty of inflation through sensitivity analysis or carry as a risk factor

Inflation Impacts Illustrated

In 20 years, a one-percentage-point difference equates to $462K on a $1M Base Year estimate!

Note that due to compounding, effects are not symmetric.

Tip: Inflation rates are like mortgage rates: Never round!

Constant Inflation

Costs generally rise over time. Here you can see what a $1000 basket of goods today might cost in the years to come.

This is referred to as Current Year dollars.
Inflation Rate and Raw Index

Each “jump” here is multiplying by the raw index.

\[y = 1000 \times 1.05^n \]

Inflation rate = 5% is equivalent to Raw Index = 1.05

Non-Constant Inflation

three-month fiscal “year”!
Consumer Price Index (CPI)

- The CPI shows the prevailing prices for a variety of commodities in a given time period.
- The table below shows the prices for one pound of ground coffee.

Original Data Value

<table>
<thead>
<tr>
<th>Series Id: APU0000717311</th>
<th>Area: U.S. city average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item: Coffee, 100%, ground roast, all sizes, per lb. (453.6 gm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>2.13</td>
<td>2.25</td>
<td>2.29</td>
<td>2.17</td>
<td>2.18</td>
<td>2.16</td>
<td>2.15</td>
<td>2.10</td>
<td>2.21</td>
<td>2.28</td>
<td>2.36</td>
<td>2.42</td>
</tr>
<tr>
<td>1992</td>
<td>2.35</td>
<td>2.45</td>
<td>2.46</td>
<td>2.51</td>
<td>2.53</td>
<td>2.55</td>
<td>2.57</td>
<td>2.64</td>
<td>2.42</td>
<td>2.43</td>
<td>2.48</td>
<td>2.48</td>
</tr>
<tr>
<td>1993</td>
<td>4.4</td>
<td>4.23</td>
<td>4.11</td>
<td>4.08</td>
<td>4.07</td>
<td>4.05</td>
<td>4.03</td>
<td>3.87</td>
<td>3.81</td>
<td>3.75</td>
<td>4.38</td>
<td>4.33</td>
</tr>
<tr>
<td>1995</td>
<td>4.03</td>
<td>3.97</td>
<td>4.03</td>
<td>3.96</td>
<td>3.98</td>
<td>3.79</td>
<td>3.77</td>
<td>3.71</td>
<td>3.62</td>
<td>3.55</td>
<td>3.48</td>
<td>4.15</td>
</tr>
<tr>
<td>1996</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.47</td>
<td>2.33</td>
<td>2.44</td>
<td>2.42</td>
<td>2.39</td>
<td>2.46</td>
<td>2.46</td>
<td>2.46</td>
<td>4.35</td>
</tr>
<tr>
<td>1997</td>
<td>1.35</td>
<td>1.36</td>
<td>1.36</td>
<td>1.38</td>
<td>1.35</td>
<td>1.34</td>
<td>1.32</td>
<td>1.32</td>
<td>1.31</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>1998</td>
<td>3.22</td>
<td>3.22</td>
<td>3.22</td>
<td>3.13</td>
<td>3.11</td>
<td>3.16</td>
<td>3.1</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
</tr>
</tbody>
</table>

CPI Example - Gasoline

<table>
<thead>
<tr>
<th>Series Id: APU0000717311</th>
<th>Area: Washington-Baltimore, DC-MD-VA-WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item: Gasoline, unleaded regular, per gallon/3.785 liters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>1.15</td>
<td>1.1</td>
<td>1.05</td>
<td>1.05</td>
<td>1.06</td>
<td>1.07</td>
<td>1.07</td>
<td>1.06</td>
<td>1.03</td>
<td>1.03</td>
<td>1.01</td>
<td>0.97</td>
</tr>
<tr>
<td>1999</td>
<td>0.93</td>
<td>0.95</td>
<td>1.06</td>
<td>1.09</td>
<td>1.1</td>
<td>1.14</td>
<td>1.18</td>
<td>1.23</td>
<td>1.26</td>
<td>1.27</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td>2000</td>
<td>1.3</td>
<td>1.35</td>
<td>1.52</td>
<td>1.54</td>
<td>1.54</td>
<td>1.59</td>
<td>1.62</td>
<td>1.59</td>
<td>1.56</td>
<td>1.56</td>
<td>1.53</td>
<td>1.5</td>
</tr>
<tr>
<td>2001</td>
<td>1.48</td>
<td>1.48</td>
<td>1.47</td>
<td>1.53</td>
<td>1.71</td>
<td>1.69</td>
<td>1.58</td>
<td>1.46</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Inflation: $\frac{(1.44-1.15)}{1.15} = 25.2\%$

Index: $1.44/1.15 = 1.252$

Annualized Inflation: $1.252^{\left[\frac{1}{44/12}\right]} = 1.063 = 6.3\%$
Composite Inflation Indices

- Composite inflation indices capture in a single number the effects of different amounts of inflation varying by appropriation or commodity.
- Composite inflation indices are essentially a weighted average, computed as follows:
 - Determine the proportion (percent) of costs associated with each inflation index.
 - Multiply each index by its corresponding percent.
 - Sum these to get the composite index.

Example: Composite Index

- Suppose your cost will be escalated and you have the following information available:

 - Steel comprises 20% of the cost with an escalation rate of 5.6%.
 - Automotive comprises 35% of the cost with an escalation rate of 6.2%.
 - Machinery comprises 45% of the cost with an escalation rate of 5.7%.

What would the composite escalation rate be for this example?
Example: Composite Index

- We multiply each rate (or index) by the appropriate percentage and sum:

```
Steel
1.056

Auto.
1.062

Mach.
1.057
```

\[
0.2\times(5.6\%) + 0.35\times(6.2\%) + 0.45\times(5.7\%) = 5.855\%
\]

\[
0.2\times1.056 + 0.35\times1.062 + 0.45\times1.057 = 1.05855
\]

Appropriations to Expenditures

- Escalation addresses the issue that costs tend to rise from one period of time to the next.
 - Expenditures = the actual payment of funds.
- But what happens when costs are spent over a period of time?
 - Outlay profiles determine how appropriated funds are expended - when and in what proportion funds are spent over time.
 - Commitment = administrative reservation of funds authorizing the creation of an obligation.
 - Obligation = responsibility to pay for future goods or services to be received.
 - Expenditure = charge against available funds or the actual payment of funds.
- **Tip:** Appropriations, obligations, and commitments are a government estimate-only concern.
Outlay Profiles and Appropriation Types

- Funds are not necessarily obligated and then expended in the year they are appropriated.
- Outlay profiles show how funds are spent over time:
 - Specific to type of appropriation.
 - Typically based on historical averages.
 - Programs are often measured on “promptness” of outlays.
- Outlay profiles are shown as the percentage of funds spent in the appropriation year and each “out year.”

Outlay Profile Illustrated

The funds will all be appropriated in Year 1...

...but 60% of these funds will be spent after Year 1.

These funds will not possess the same purchasing power as when they were appropriated, due to inflation.

Tip: In this illustration, the Outlay Profile %s are based on TY$ not BY$.

© 2002-2010 SCEA. All rights reserved.
Weighted Index Calculation:
De-escalation

1 divided by the sum of the contributions (1 / 0.9131) is equivalent to the weighted index for year 1 using this profile – 1.0952.

Warning: The weighted index is a “one-way” index

Weighted Index – The Steps

Tip: The raw index for the Base Year of a table will always be 1.00
Example: Two Outlay Profiles

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
<th>YEAR 4</th>
<th>YEAR 5</th>
<th>YEAR 6</th>
<th>YEAR 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.33%</td>
<td>36.10%</td>
<td>5.79%</td>
<td>3.93%</td>
<td>1.85%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>1.0000</td>
<td>1.0160</td>
<td>1.0323</td>
<td>1.0539</td>
<td>1.0761</td>
<td>1.0987</td>
<td>1.1217</td>
</tr>
</tbody>
</table>

So what would happen to $1,000,000 in these 2 cases?

Example: Obligations and Outlays

What about inflation?
Example: Outlays and Inflation

Since all the money is spent in the current year, there is no inflation.

Inflation reduces the value of each outyear expenditure.

Inflation Tables and Escalation Procedures
Escalation Procedures Overview

- Two goals of this section:
 - Provide a conceptual understanding of how to adjust for inflation correctly
 - Provide a desktop reference with step-by-step directions for all inflation conversions

- Outline
 - Terminology
 - Inflation index tables structure and use
 - Basic principles of escalation calculations
 - Step-by-step instructions, with examples
 - Current Year $ to Current Year $
 - Current Year $ to Then Year $
 - Then Year $ to Current Year $
 - Then Year $ to Then Year $

Inflation Terminology

- **Non-budget costs**
 - Costs reflect purchasing power of each year, e.g., raw historical data not adjusted for inflation

- **Budget estimates**
 - Costs all in one year, e.g., data already adjusted for inflation that is ready to use to develop a CER, or compare costs of a total system
 - Costs adjusted for outlay profiles, e.g., a government budget submission

- **Base Year Estimating Paradigm**
 - Adjust historical data into one constant Base Year to account for inflation
 - Apply analogies, develop CERs, estimate system costs in Base Year
 - Time phase costs
 - If estimate used in government budgeting process, adjust for outlay profiles

© 2002-2010 SCEA. All rights reserved.
Inflation Indices

- Two main types of indices
 - Raw indices: Used for Constant Year to Constant Year conversions
 - Weighted indices: Used for Constant Year to Then Year conversions (and vice-versa)

- For both raw and weighted indices, specific indices exist for constant year

- For both raw and weighted indices, specific indices exist for different appropriations
 - The raw and weighted indices are specific to the item estimated (e.g. fuel, aircraft, overall O&M)
 - For weighted indices, the outlay profile for the appropriation is also factored in

- For both raw and weighted indices, the appropriations type changes the values of how much inflation is expected

- See Advanced Topics for instructions on how to create your own index table

Inflation Index Tables

- The type of computation (CY → CY or CY ↔ TY) determines which type of indices you use
 - What year you are going to determines whether you multiply or divide by these indices

- The key value of the table is the Base Year of the table (table’s year)

- With the table’s year in mind, an index table can be used in two ways
 - From the table’s year to any other year: MULTIPLY by indices
 - From any other year to the table’s year: DIVIDE by indices
Base-Year Estimating and Time Phasing

- **Order of operations:**
 - Estimate all costs in one common Base Year.
 - Time-phase estimate across span of estimated schedule using an expenditure or obligation profile.
 - Escalate time-phased estimate to **Current Year** or **Then Year $** for each individual year.

- **Mid-point method** can be used on historical data that spans multiple years where the expenditure/obligation profile is not known.
 - Treat entire amount as a lump sum that “acts” at a single point in time.
 - *Do not use* arithmetic mean to compute a midpoint from Current-Year or Then-Year dollar amounts.

Index Table Layout

- **Years**
 - Base Year
 - Index Type
- **Budget Multiplier**
- **Inflation Rate**
- **Raw Index**
- **Weighted Index**
- **Compound Rate**
- **Composite Rate**
- **Yearly Escalation Rate**
- **Civilian Pay**
Escalation Procedure

Step 1: Determine type of dollars starting from (CY/TY and year), and what type of dollars going to (CY/TY and year)

Step 2: Choose appropriate index table

Step 3: Divide by the index in the “From Year” row

Step 4: Multiply by the index in the “To Year” row

Escalating Constant Year to Then Year Example

- **Problem:** Estimate a future Air Force software development effort that will be similar to an USAF program that cost $10M in FY06. The funds for the new effort will need to be obligated in 2015.
- **Step 1:** Need to go from CY06$ to TY15$
- **Step 2:** Choose RDT&E appropriation in both the raw and weighted tables, Table’s Year is 2015
Escalating Constant Year to Then Year Solution

Step 3:
- Convert CY06$ to CY15$ (the Table’s Year CY$)
- Divide by the 2006 raw index
- $10M CY06 / 0.832 = $12.0M CY15

Step 4:
- Convert the CY15$ to TY15$ (the year you’re going to)
- Multiply by the 2015 weighted index
- $12.0 CY15 * 1.012 = 12.2M TY15

USAF Raw Inflation Indices

<table>
<thead>
<tr>
<th>Year (FY)</th>
<th>Operations & Maint., Non-POL</th>
<th>RDT&E, testing, Evaluation (3600)</th>
<th>Military Construct. (3300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.782</td>
<td>0.782</td>
<td>0.782</td>
</tr>
<tr>
<td>2005</td>
<td>0.807</td>
<td>0.807</td>
<td>0.807</td>
</tr>
<tr>
<td>2006</td>
<td>0.832</td>
<td>0.832</td>
<td>0.832</td>
</tr>
<tr>
<td>2007</td>
<td>0.854</td>
<td>0.854</td>
<td>0.854</td>
</tr>
<tr>
<td>2008</td>
<td>0.871</td>
<td>0.871</td>
<td>0.871</td>
</tr>
<tr>
<td>2009</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
</tr>
<tr>
<td>2010</td>
<td>0.905</td>
<td>0.905</td>
<td>0.905</td>
</tr>
<tr>
<td>2011</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
</tr>
<tr>
<td>2012</td>
<td>0.942</td>
<td>0.942</td>
<td>0.942</td>
</tr>
<tr>
<td>2013</td>
<td>0.961</td>
<td>0.961</td>
<td>0.961</td>
</tr>
<tr>
<td>2014</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
</tr>
<tr>
<td>2015</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

USAF Weighted Inflation Indices

<table>
<thead>
<tr>
<th>Year (FY)</th>
<th>Operations & Maint., Non-POL</th>
<th>RDT&E, testing, Evaluation (3600)</th>
<th>Military Construct. (3300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.768</td>
<td>0.797</td>
<td>0.818</td>
</tr>
<tr>
<td>2005</td>
<td>0.807</td>
<td>0.838</td>
<td>0.863</td>
</tr>
<tr>
<td>2006</td>
<td>0.848</td>
<td>0.885</td>
<td>0.909</td>
</tr>
<tr>
<td>2007</td>
<td>0.890</td>
<td>0.931</td>
<td>0.955</td>
</tr>
<tr>
<td>2008</td>
<td>0.933</td>
<td>0.975</td>
<td>0.999</td>
</tr>
<tr>
<td>2009</td>
<td>0.978</td>
<td>1.022</td>
<td>1.045</td>
</tr>
<tr>
<td>2010</td>
<td>1.022</td>
<td>1.070</td>
<td>1.092</td>
</tr>
<tr>
<td>2011</td>
<td>1.070</td>
<td>1.119</td>
<td>1.142</td>
</tr>
<tr>
<td>2012</td>
<td>1.119</td>
<td>1.165</td>
<td>1.188</td>
</tr>
<tr>
<td>2013</td>
<td>1.165</td>
<td>1.214</td>
<td>1.237</td>
</tr>
<tr>
<td>2014</td>
<td>1.214</td>
<td>1.263</td>
<td>1.285</td>
</tr>
<tr>
<td>2015</td>
<td>1.263</td>
<td>1.313</td>
<td>1.335</td>
</tr>
</tbody>
</table>

Escalating Constant Year to Then Year Illustrated

Step 1: Need to go from CY06$ to TY15$
Step 2: Choose RDT&E appropriation in both the raw and weighted tables, Table’s Year is 2015

$10M CY06

\[
\text{CY$ From Year} / \text{0.832} = \text{$12.0M CY15}
\]

\[\text{2006 row value FROM} \quad \text{Step 3: Divide} \quad \text{CY$ Table's Year}
\]

\[\text{TY$ From Year} \cdot \text{1.012} = \text{$12.2M TY15}
\]

\[\text{Raw} \quad \text{To Year} \quad \text{Weighted} \quad \text{To Year}
\]

© 2002-2010 SCEA. All rights reserved. Unit II - Module 5
Escalation Procedures Mnemonic

1. Divide by the index from the FROM row
- **Raw if from CY**
- **Wtd if from TY**

2. Multiply by the index from the TO row
- **Raw if to CY**
- **Wtd if to TY**

Inflation Summary

- **Know the Math!**
 - Easier to remember application
 - Confidence in answers
- **Use intuition, but don't rely on it...**
 - Inflation = prices rise over time
 - Weighted Indices = takes more “budget” dollars than “regular” dollars
- **Inflation Terminology is not always consistent**
 - Learn the local dialect
 - Ask for clarification
- **Gotta get it right!**
 - Look it up, follow the directions
 - Inflation can be a difficult topic - use your resources!
- **As long as the appropriation is correct, any calculation can be done from any given index table, regardless of its Base Year**

Tip: This "trick" uses the Table’s Year (Base Year) CY$ as the intermediate step.

Tip: Inflation is conceptually easy, but even experienced estimators go back to the basic guide and follow it step by step.

© 2002-2010 SCEA. All rights reserved.