Overview

• Removing the Intimidation Factor
• Four Types of Data Analytics
• Examples of Data Analytic Techniques in Cost Estimating
• Barriers to Embracing Data Analytics
• Where Do We End Up?
Removing the Intimidation Factor
Everyone is talking about data analytics, but what does it mean?

• What is Data Science?
• Data science is an **interdisciplinary field** that uses scientific methods, processes, algorithms and systems to **extract knowledge and insights** from data in various forms, both structured and unstructured. [1]
 – *Solid foundations in mathematics, statistics, information science, operations research, and computer science*

• What is a Data Scientist?
• Data Scientists **estimate the unknown** by asking questions, writing algorithms, and building statistical models [2]
 – *Solid mathematical, computer science and analysis skills*

• What is Data Analytics?
• Data analytics is the process of extracting, transforming, loading, modelling, and drawing conclusions from data **to make decisions** [3]

• What is a Data Analyst?
• Data Analysts **use data to draw meaningful insights and solve problems** from well-defined sets of data using an arsenal of different tools to answer tangible questions [2]
 – *Solid mathematical, statistical, and data analytic skills, less programming focused*

Hmmm… this is sounding very familiar…
Removing the Intimidation Factor
Where do Cost Estimators fit?

- Bureau of Labor Statistics: “Cost estimators collect and analyze data in order to estimate the time, money, materials, and labor required to manufacture a product, construct a building, or provide a service. They generally specialize in a particular product or industry.”
 - **Cost Estimate** – An approximation of the probable cost of a product, program, or project, computed on the basis of available information [5]

<table>
<thead>
<tr>
<th>Cost Estimators</th>
<th>Data Analysts / Data Scientists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect and Analyze Data for Use in Cost Estimates</td>
<td>Data Analysts & Data Scientists clearly identify the problem they are trying to solve and gather applicable data</td>
</tr>
<tr>
<td>Interact with Engineering Teams to Decompose Product, Program or Projects into Time, Money, Materials and Labor Elements</td>
<td>Data Analysts & Data Scientists deconstruct their problem so they can use data to draw meaningful insights to answer questions</td>
</tr>
<tr>
<td>Identify Methodologies to Estimate Unknown Costs for Elements</td>
<td>Data Scientists estimate the unknown by writing algorithms and building statistical models from data</td>
</tr>
</tbody>
</table>

Remove the focus on “cost” and all Cost Estimators are already Data Analysts and some are even Data Scientists!
Four Types of Data Analytics
Industry standard types of analytics [3]

- **Optimization**: “What is the best solution?”
- **Random Testing**: “What if we try this?”
- **Predictive Modeling**: “What will happen next?”
- **Statistical Modeling**: “What is the pattern?”
- **Discovery and Alerts**: “Where should we look?”
- **Query and Drilldowns**: “Why did that happen?”
- **Ad Hoc Reporting**: “How much, when and where?”
- **Canned Reports**: “What happened?”

Different types of analytics are used for different purposes.

Graphic adapted from Hinter – “The Four Types of Data Analytics”
Four Types of Data Analytics

 Analyses Performed in Cost Estimating

- **Optimization**
 “What is the best solution?”

- **Random Testing**
 “What if we try this?”

- **Predictive Modeling**
 “What will happen next?”

- **Statistical Modeling**
 “What is the pattern?”

- **Discovery and Alerts**
 “Where should we look?”

- **Query and Drilldowns**
 “Why did that happen?”

- **Ad Hoc Reporting**
 “How much, when and where?”

- **Canned Reports**
 “What happened?”

Future

Past

Risk Models

Contractor Reports

Graphic adapted from Hinter – “The Four Types of Data Analytics”

Standard analyses performed in the cost estimating community fit within these types.
Example 1 – Baby Steps
Using Data Analytics Tools to Perform Descriptive Analysis

Analysis of Federal Employment Data

• Office of Personnel Management (OPM) conducts analyses and develops reports that allow for the assessment of trends and workforce issues that affect OPM and other Federal agencies
 – *Publish the raw data from their database as the **FedScope Employment Cube***
 • https://www.fedscope.opm.gov/employment.asp

• **Why is this a Data Analytics problem?**
 – FedScope Employment Cube raw dataset contains 25 database structured tables
 – To glean useful information from the dataset, multiple tables need to be combined to perform analysis (i.e., recompile the database and perform a query)
 – The most recent file is 21.6 MB in size
 – Database contains information on 125 different federal agencies
 – The table needed with the pertinent is more than ~3M lines

Size and multiple feeds of data will drive a need for Cost Estimators to perform more complex data normalization and analysis in the future.
Example 1 – Baby Steps
Using Data Analytics Tools to Perform Descriptive Analysis

The use of a Python script to process and compile large datasets provides efficiency opportunities and reduces size to open access to traditional tools.
Example 2 – Automation

Scalability of Cost Model Excursions

Interfacing with Modeling and Simulation (M&S) Team

• Customer need to utilize modelling techniques to identify optimized performance solutions for a 15 year time period
 – Optimization runs each produce an unknown number of solutions (let’s call this n)
 – A cost needs calculated for each solution found by the run
 – There is a significant volume of runs (let’s call this m)

• Why is this a Data Analytics problem?
 – Significant Volume of Cost Estimates Required
 • Volume of Cost Estimates = Many Feasible Solutions (n) x Volume of Runs (m)
 – Cost estimate results need compiled and returned to M&S team for interactive visualizations
 – Variability of Baseline Architecture to be Costed (e.g. locations, hardware)
 – Project schedule dictated need for quick turn results

Resource constraints, volume and variability of work forced the team to think outside of normal practices and workflows.
Example 2 – Automation

Develop Flexible Cost Model and Automate Repetition

Identification of Redundant Data Collection Efforts

• Two organizations for the same agency collecting data from Quarterly Performance Reports (QPRs) and entering the data into two separate data repositories
 – Organization #1 – focus on schedule data points
 • Goal: develop CERs to be used for cost estimation
 – Organization #2 – focus on cost, performance, schedule and dependencies between programs
 • Goal: maintain a data repository and dashboard visualization capability to inform stakeholders of status and identify risks for the enterprise

• Why is this a Data Analytics problem?
 – Violates core tenants of data analytics:
 • Collect once, use many
 • Data becomes stove piped again upon arrival to the agency – defeats purpose of QPR
 • Inefficient use of resources

Data collection efforts can be optimized to accomplish more than one goal.
Example 3 - Collaboration

Elimination of Redundancy

Before

- Organization #1
 - Data Repository #1
 - Data Repository #2
 - CER Development
 - QPR – Sched. Data
 - QPR – Cost Data
 - QPR – Perf. Data
 - QPR – Depend. Data
 - Data Repository
 - Data Dashboard

- Organization #2

After

- Organization #1
 - Data Repository #1
 - Data Repository #2
 - CER Development
 - QPR – Sched. Data
 - QPR – Cost Data
 - QPR – Perf. Data
 - QPR – Depend. Data
 - Data Repository
 - Data Dashboard

- Organization #2

Eliminating the redundant data collection effort frees up time for deeper analysis.
Barriers to Embracing Data Analytics

The Current Landscape

• Tools and Capabilities
 – Cost Estimating Software
 – Home Grown Tools
 – Complex Excel Files

• Organization
 – Knowledge Base
 – Skill Sets
 – Organizational Inertia

• Other Factors
 – Data Access and Security
 – Policy Restrictions
 – Deliverable Timelines

There are a variety of barriers to the community wholly embracing data analytics.
Barriers to Embracing Data Analytics
What Needs to Change?

• To fully embrace data analytics, our community needs to become data-driven[6]
 – We use data all the time…. Does that make us a data-driven organization?

• Data-driven Organizations[6]:
 – Value the \textit{ongoing sharing of information and collaboration}
 – Believe all appropriate \textit{data should be accessible} to anyone in the organization
 – \textbf{Have the tools and skills} to make sense of vast amounts of Structured and Unstructured data to inform decisions and make predictions
 – \textit{Make data collection a primary activity} for every part of the organization and reward and measure the behavior
 – \textit{Provide real-time insights} to identify where course corrections are needed and new opportunities present themselves
 – \textbf{Senior leaders recognize and support} the data-driven culture
 – Use data to \textbf{constantly diagnose problems} in the system and processes
 – \textit{Value transparency} and upward communication

Using and analyzing data does \textbf{not} mean your organization has a data-driven culture.
Barriers to Embracing Data Analytics
How do we get there?

Steps toward evolving into a data-driven enterprise[7]:

1. **Develop an integrated data warehouse**
 - Master data repository where data is captured only once
 - Enables the consistent use of data across the organization
 - Facilitates tighter security controls

2. **Make data readily available**
 - Provide transparency to the data
 - Create flexible reporting capabilities

3. **Understand limitations**
 - Technical limitations to data gathering
 - Anticipate down the road issues associated with data traceability and level of fidelity

4. **Harness tools**
 - Provide meaningful insights
 - Predict and manage risk
 - Reveal new areas of opportunity

5. **Conduct Business Intelligence and Data Analytics (BIDA) health-checks**
 - Ensure people, processes and things aligned with data strategy and roadmap
 - Once or twice a year, including seniors, to assess the vision

Small steps make huge differences. Jumping the gun can result in failure.
Where Do We End Up?
What does a Cost Estimating world look like with Data Analytics?

• Build from a knowledge management foundation
 – Consists of the initiatives, processes, strategies, and systems that sustain and enhance the storage, assessment, sharing, refinement, and creation of knowledge\(^1\)
 – Data Collection and Normalization still remains a primary function but the 80/20 rule begins to shrink

• Evolve into a learning organization
 – A learning organization is a company that facilitates the learning of its members and continuously transforms itself\(^1\)
 – Documentation of institutional knowledge

• Improved organizational efficiency
 – Monitor CERs overtime for adjustments and continued validity
 – Models can become plug and play by tapping different data libraries and/or vetted estimating methodologies – Similar to Cost Estimating Software but on a more tailored and larger scale
 – Repetitive tasks can be eliminated

Data Analytic techniques open unexplored new dimensions.
Questions?
References