TASC

Function Point Analysis

Introduction and Basic Overview as an Alternative to SLOC-based Estimation

November 17, 2010

Tucker Moore TASC - ASOU

© 2010 TASC. Inc

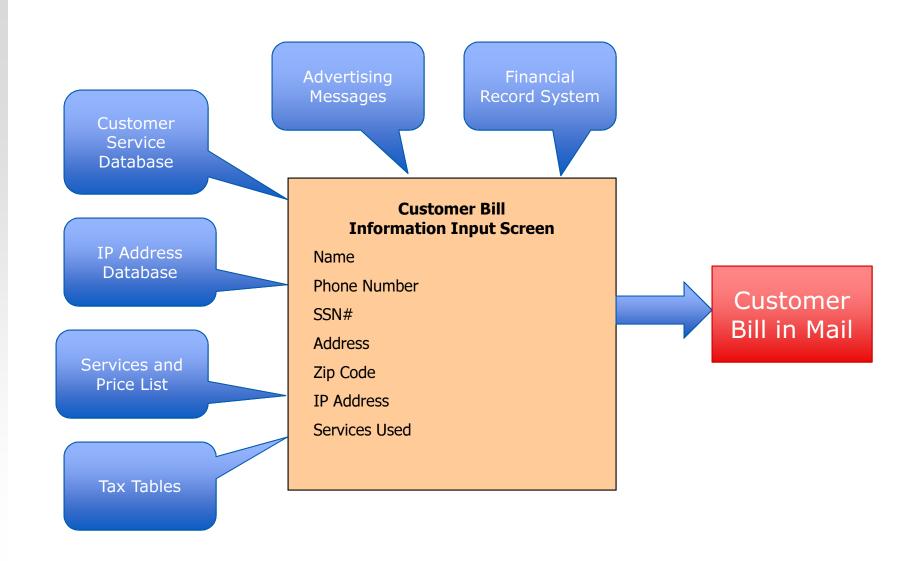
Software Cost Estimation

- ► Two Main Types of Developed SW Cost Estimation
 - SLOC Based Estimation
 - Function Point Analysis
- ▶ What's the Difference?
 - SLOC deals specifically with counting and estimating the Lines of Code for a program. It is explicitly code length-based, usually to apply a \$/LOC productivity rate to an estimate.
 - Function Point Analysis quantifies and assigns a value to the actual <u>uses</u>, <u>interfaces</u>, <u>and purposes</u> of a piece of SW. It also adjusts these values depending on the complexity of the program.
- ► This presentation focuses on Function Point Analysis as an alternative to SLOC based estimations.

Robert Cringely - "If automobiles had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get a million miles per gallon, and explode once a year, killing everyone inside."

Presentation Agenda

- ► The Definitions of a Function Point (FP)
- Brief History of FP Analysis
- What you need, and Why you use Function Points
- Basic "How To Count" Function Points
- Benefits of FP Analysis Pros and Cons
- Recommendations
- Conclusion
- References
- ≥ ≈35 Slides


► What is a Function Point?

- ► IFPUG (International Function Point Users Group):
 - Function Point Analysis (FPA) is a sizing measure of clear business significance. The FPA technique quantifies the functions contained within software in terms that are meaningful to the software users.
 - About Function Point Analysis, http://www.ifpug.org/about/about.htm (2005). Online.

► SCEA:

- Function points are a size measure that, as the name indicates, considers the number of functions being developed based on the requirements specification.
- SCEA. Cost Estimating Body of Knowledge (CEBoK), Module 12 Software Cost Estimation. 2009. Print.
- So...What does that mean?
 - Simply Speaking: Function Points are the aspects of a SW application that a <u>User</u> recognizes as important to the SW program's actual use.

For the Visual Learner: Cable Company Billing Example

Quick History of FP Analysis

- Allan Albrecht, of IBM, developed the method of Function Point Counting in 1979 in A New Way of Looking at Tools
- In 1986, the IFPUG, or International Function Point Users Group, was set up to develop and apply standards to the practice of function point analysis
 - IFPUG has numerous international partners in Europe, Australia, and Asia
- Since 1986, several versions of the Function Point Counting Practices Manual have been published by IFPUG. However, a new version is published only out of necessity in order to keep the standards from changing.
- IFPUG: About Us, http://www.ifpug.org/about/ (2009). Online.

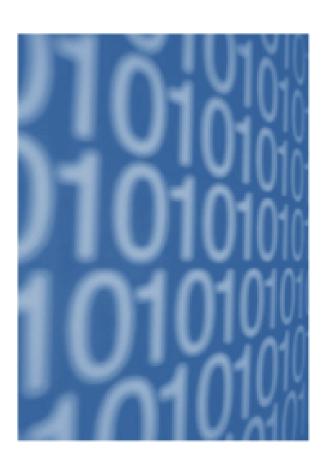
Getting Started: What do you need?

- ► The <u>Right</u> Resources
 - The Program's Primary <u>Users</u>
 - Program Developers / People who are familiar with the program (logically)
 - Customers
 - System Analysts
 - Project Managers
 - Function Point Specialists
 - Measurement Analysts

Picture borrowed from the Audi website. They looked like they were working well together.

What else do you need?

- ► The <u>Right</u> Documentation
 - Helps give a visual look into the program being counted
 - High-level application architecture
 - A logical data model
 - Detailed design specifications and requirements, including functionality requirements
 - Business function/process models
 - User manuals
 - Screen prints
 - Printed report layouts
 - Function Point Counting Practices Manual



A Note on Documentation

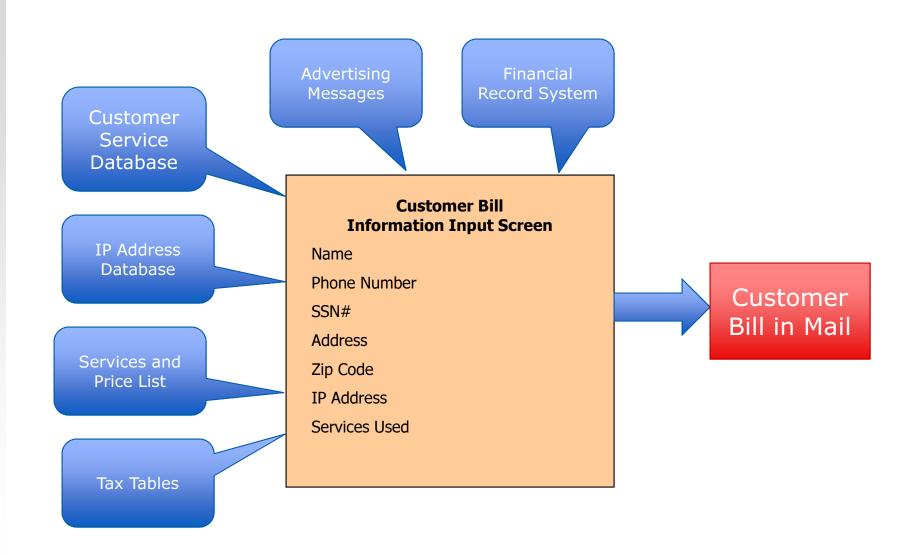
- Function Point Analysis can be performed with as many/few of these documents as are available
 - Documents are only necessary for assisting the analyst to facilitate the visual mapping process for the program with a manager or engineer
 - A high level architecture, design specifications, and function/process models are all sufficient if the analyst can understand them and the manager can explain them
 - This ability to work with preliminary documents is beneficial especially because this is all the cost analyst has to work with in many situations

Where do I get this data?

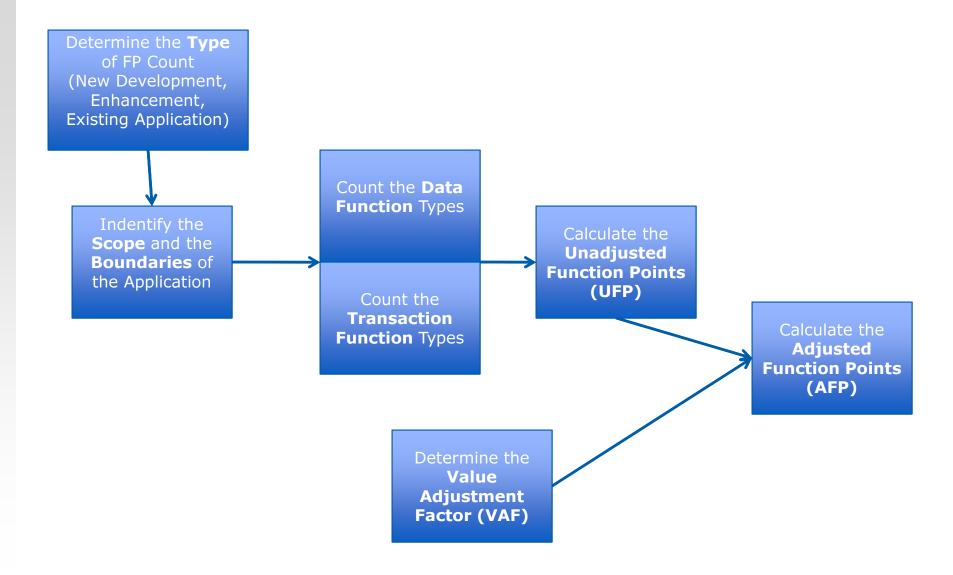
- ▶ ICBD (for the Intelligence Community)
- CARD (for DoD Programs)
- User Interviews
- Customer Interviews
- Programmer Interviews
- Past Similar Systems
 - Like in SLOC-based estimation
 - Gives a great comparison metric
- Common Sense

Why do you need this data?

- ► Historical Data and Pre-Established Parametric Data
 - Similar programs can be used to establish relationships or to see possible trends in the function growth and development time frame
- Must be able to visualize the logical progression
 - Visual Maps are essential to understanding the flow of the program
- Insight into the program complexity

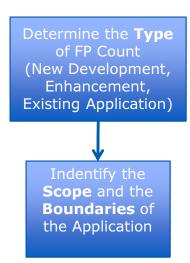

Identify important, easily-forgotten features

So, How do you count Function Points?


- Disclaimer: This is just the <u>Basic Idea</u>
- Let's go back to the "ComCable Company" Example
 - Estimate for New Customer Billing System
 - Assuming we're starting from scratch
 - Customer Services maintains Customer Billing Info, enters into the system
 - The information going onto Bill comes from multiple, externally maintained systems

John Herman 123 King Stre Waterloo, On N2L 3X1	et,		Billing Da	Accou ite: 25-Novemb	nt #123 er-1997
			o 25-November)		
,		.uo per caii).			\$3.00
Long Distan					
Date	Time Amount	Minutes	Dialed Number	Rate (\$/min)	
Thu, Oct 30		19	129	0.10	\$1.20
Sun. Nov 2			199		\$1.70
Sun, Nov 2			199	0.10	\$3.20
Wed, Nov 5			129	0.07	\$1.47
Sat. Nov 8				0.25	
Mon, Nov 17	5:20pm	38	129		\$9.50
Sat, Nov 22	11:18pm	19	199	0.07	\$1.33
Total Long Dis	tance Calls				\$30.65
Total Current	Bill				\$57.15

Again, For the Visual Learner



Function Point Counting Process

▶ Where are we in the process?

- ► The **Type** of count that we're performing is a "New Development Count"
 - We assumed that this is the first time a billing system was created
 - No existing code or structure was introduced
- We've already identified the Scope and Application Boundaries
 - We know the purpose
 - We know what data goes in / comes out through interfaces and user transactions
 - We know what the User wants

Now We Count the Functions

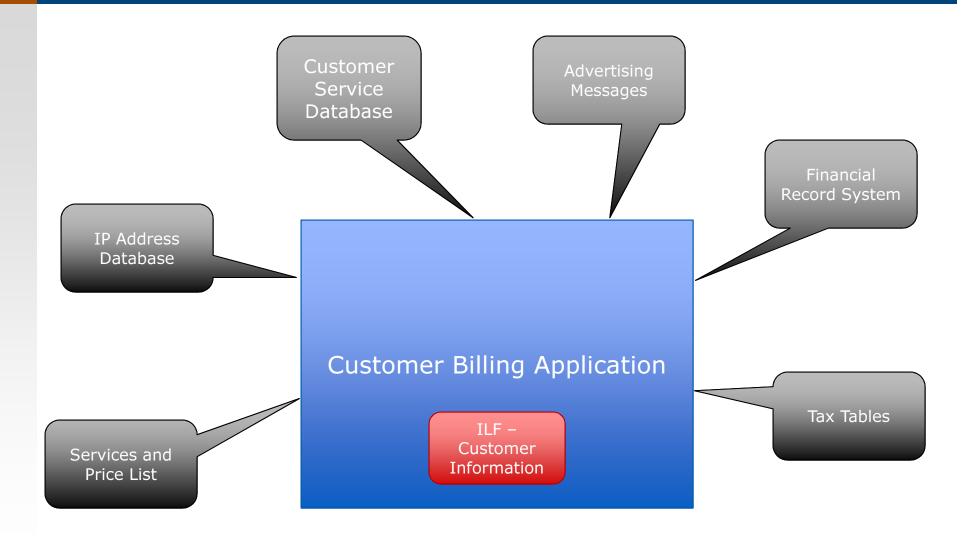
- Two Types of Functions
 - Data Functions
 - Transaction Functions
- Data Functions
 - Made up of the Internal and External "resources" that affect the system
 - Internal Logical Files (ILF) and External Interface Files (EIF)
- Transaction Files
 - Made up of the processes that are exchanged between the user, the internal files, and the external files
 - External Inputs (EI), External Outputs (EO), and External Inquiries (EQ)
- More detail on these on next slide

 Count the Data Function Types

 Count the Transaction Function Types

Indentify the Data Functions

- Remember, we have two types of Data Functions
 - ILFs and EIFs


▶ ILFs

- Internal Logical Files are those that are User identifiable groups of data and are maintained by the User
- Let's assume we have one ILF: "ComCable" Customers

► EIFs

- External Interface Files are User identifiable groups of data that are maintained by someone <u>Other Than</u> the user.
- EIF's hold information that is referenced to by an ILF
- Assume we have six

► ILFs and EIFs

Transaction Functions

- Transaction Functions are the inputs, outputs, and data retrievals through logical processing
- Types: External Inputs, External Outputs, External Inquiries
- External Inputs (EI)
 - Unique process, data goes INTO application from outside the boundary
 - Intent is to maintain / alter the system
- External Output (EO)
 - Data comes OUT of the system
 - Intent is to present information to a user
 - Performs Calculation, Derives Data, or Updates ILF
- External Inquiries (EQ)
 - Data comes OUT of the system
 - Intent is to present information to a user
 - Performs NO calculations, Derives NO data, Updates NO ILFs

Transaction Functions in the Example

- External Inputs
- (on INPUT screen)
 - Add RecordFeature
 - Change RecordFeature
 - Delete RecordFeature

- External Outputs
 - The Customer Bill Report
 - Print ReportFeature

- External Inquiries
- (on INPUT screen)
 - Report Look-Up Feature

Input Screen and Customer Bill

Customer Service Input Screen

Customer Information Name:_____ Phone Number:_____ SSN#:_____ Address:_____ Zip Code:_____ IP Address:_____ Services Used:_____ Change Delete Print Look-Up

Bill Output

	ComCable Customer Bill
	Name
	Phone Number
	SSN#
	Address
	Zip Code
>	IP Address
	Services Used
	Taxes
	Hidden Fees
	Total
	Advertisement Info

Print Bill

Great, so how many Function Points?

- Here is where Complexity comes into play
- EIFs and ILFs are broken up into two parts
 - Record Element Types (RET)
 - Data Element Types (DET)
- ► EI, EO, and EQs are broken into two parts
 - File Types Referenced (FTR)
 - Data Element Types (DET)

RETs and DETs

- ▶ In ILFs and EIFs, Record Element Types (RET) are the largest user-identifiable subgroup of elements
 - Our ILF has 3 examples: Cable, Phone, and Internet Customers WITHIN ComCable Customers
 - EIF Example: Customer's Current Balance Due within the Financial Record System
- Data Element Types (DETs) are the different elements within each RET
 - The Cable Customer RET has Name, Number, SSN, etc. as DETs

 The Customer's Current Balance Due has "Balance Due" as a DET

FTRs and DETs

- Counted for EI, EO, and EQ
- Same basic definitions as RETs and DETs for ILF/EIF
- ► File Types Referenced (FTRs) are the larger, useridentifiable subgroups within the EI, EO, EQ that are Referenced To
- Data Element Type (DET) is the data subgroup within an FTR
 - These DETs are only counted ONCE for the same logical process: if already counted by an earlier process, then they can't be counted again

Example of RET, FTR, DET Counts

ILF/EIF	RET	DET		EI/EO/EQ	FTR	DET
ILF- ComCable Customers	Cable Customers	Name Number SSN Address Zip Code Service Used		EI – Cable Customer - Add Record	ILF – ComCable Customers	Name Number SSN Address Zip Code IP Address Service Used
ILF- ComCable Customers	Phone Customers	Name Number SSN Address Zip Code Service Used		EI – Cable Customer – Change Record	ILF – ComCable Customers	Name Number SSN Address Zip Code IP Address Service Used
ILF- ComCable Customers	Internet Customers	Name Number SSN Address Zip Code IP Address Service Used		EO – Customer Bill	ILF – ComCable Customer EIF- Services/ Price EIF – Zip Code EIF – Financial Records EIF – Advertisements EIF – Tax Table	ALL OF ABOVE Total Due Taxes Bar Code
EIF – Zip Code	Zip Code Table	Zip Code				

Putting it ALL Together

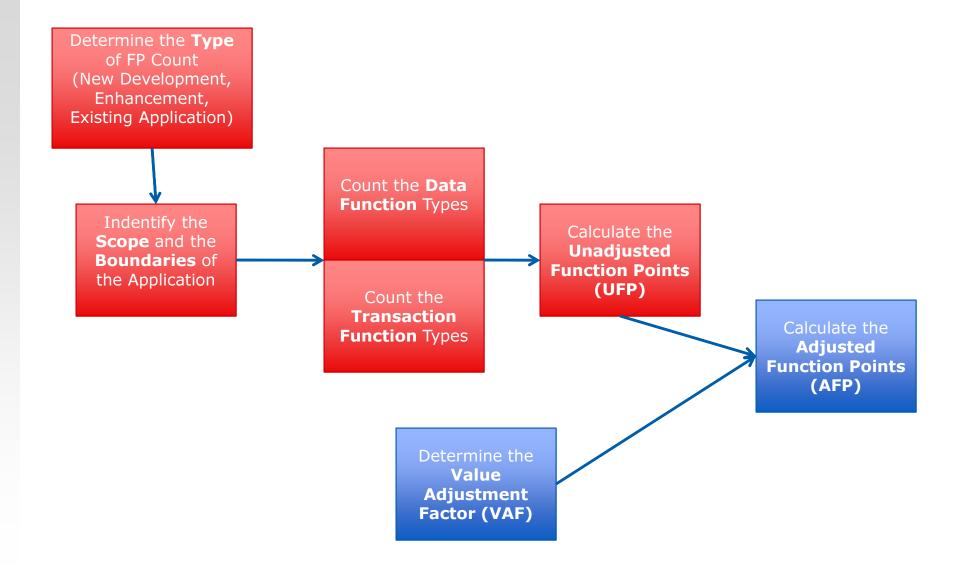
- These tables give function point values to the different RET/FTR DET combinations
- ▶ Each ILF, EIF, EI, EO, EQ is counted separately, then added up
- Ex. The Customer Bill EO has >3 FTRs, >6 DETs, therefore HIGH complexity, 7 Function Points
- ► The total of these Function Points = Unadjusted Function Point (UFP) count

ILF / EIF

RET's	DATA ELEMENTS		
	1-19	20 - 50	> 50
1	Low	Low	Ave
2-5	Low	Ave	High
>5	Ave	High	High

Rating	Values	
	ПF	EIF
Low	7	5
Average	10	7
High	15	10

ΕI


FTR's	DATA ELEMENTS		
	1-4	5-15	> 15
0-1	L_{ow}	$\mathbf{L}_{ ext{ow}}$	Ave
2	Low	Ave	High
3 or more	Ave	${ m High}$	High

EO and EQ

FTR's	DATA ELEMENTS		
	1-5	6-19	> 19
0-1	Low	Low	Ave
2-3	Low	Ave	High
> 3	Ave	High	High

Rating	VALUES		
	EO	EQ	EI
Low	4	3	3
Average	5	4	4
High	7	6	6

Next Step in the Process

Value Adjustment Factor

- The factor that normalizes the Unadjusted Function Point count
- Calculated by asking the 14 General System Characteristic Questions
 - Purpose is to apply further valuation to system complexity
 - Sums up "Degrees of Influence" for each GSC
- ► VAF calculation can be performed at **Any** point in the FP counting process
 - Any Added / Changed / Deleted functionality of a system results in VAF recalculation

VAF =
$$0.65 + [(\Sigma \text{ Deg. Of Influence}) / 100]$$

General System Characteristic Questions

- These questions help to describe the complexity of a program
- ► The analyst assigns a value of 1 5 Degrees of Influence for most questions

1	<u>Data Communications</u> : Describes the degree to which the application communicates directly with the processor.
2	<u>Distributed Data Processing</u> : Describes the degree to which the application transfers data among physical components of the application.
3	<u>Performance:</u> Describes the degree to which response time and throughput performance considerations influenced the application development.
4	Heavily Used Configuration: Describes the degree to which computer resource restrictions influenced the development of the application. Heavily used operational configurations may require special considerations when designing the application.
5	<u>Transaction Rate:</u> Describes the degree to which the rate of business transactions influenced the development of the application.
6	On-Line Data Entry: On-line User Interface describes the degree to which data is entered or retrieved through interactive transactions. On-line User Interface for data entry, control functions, reports, and queries are provided in the application.
7	End-User Efficiency: Describes the degree of consideration for human factors and ease of use for the user of the application measured. The on-line functions provided emphasize a design for user efficiency.

General System Characteristic Questions

8	On-Line Update: Describes the degree to which internal logical files (ILF) are updated on-line. The application provides on-line updates for the ILF's.
9	<u>Complex Processing:</u> Describes the degree to which processing logic influenced the development of the application.
10	Reusability: Describes the degree to which the application and the code in the application have been specifically designed, developed, and supported to be usable in other applications.
11	<u>Installation Ease:</u> Describes the degree to which conversion from previous environments influenced the development of the application. A conversion / installation plan and/or tools were provided and tested during the system test phase.
12	Operational Ease: Describes the degree to which the application attends to operational aspects, such as start-up, back-up, and recovery processes. The application minimizes the need for manual activities, such as tape mounts, paper handling, and direct, on-location manual intervention.
13	Multiple Sites: Describes the degree to which the application has been developed for different hardware and software environments.
14	<u>Facilitate Change:</u> Describes the degree to which the application has been developed for easy modification of processing logic or data structure. Made up of two parts: <u>Flexible Query</u> and <u>Business Data Control Data</u> .

Adjusted Function Point Count (AFP)

- ▶ The "Final" Function Point count
- Applies the Value Adjustment Factor (VAF) to the Unadjusted Function Point (UFP)

AFP = UFP * VAF

Some certain situations, such as an Enhancement Function Point Count, require additional math

Function Points in Cost Estimation

- Major metric is \$ / Function Point (Cost)
- Function Point / Person-Month (Productivity)
- ► For <u>Very Similar</u> Systems: SLOC / Function Point (Cost)
- Like all cost estimation, ALL of these metrics require GOOD historical data

Pros and Cons of Function Points

General Benefits (not necessarily benefits over SLOC):

- Independent of Technology
- Independent of Programming Languages
- Requirements are the only thing needed for a FP Count
- SLOC can grow but Functionality usually stays the same
- Provides a method of easier communication with business groups
- Clear view of size, cost, and productivity
- Keeps all parties involved in estimate
- Provides a naturally strong base of documentation

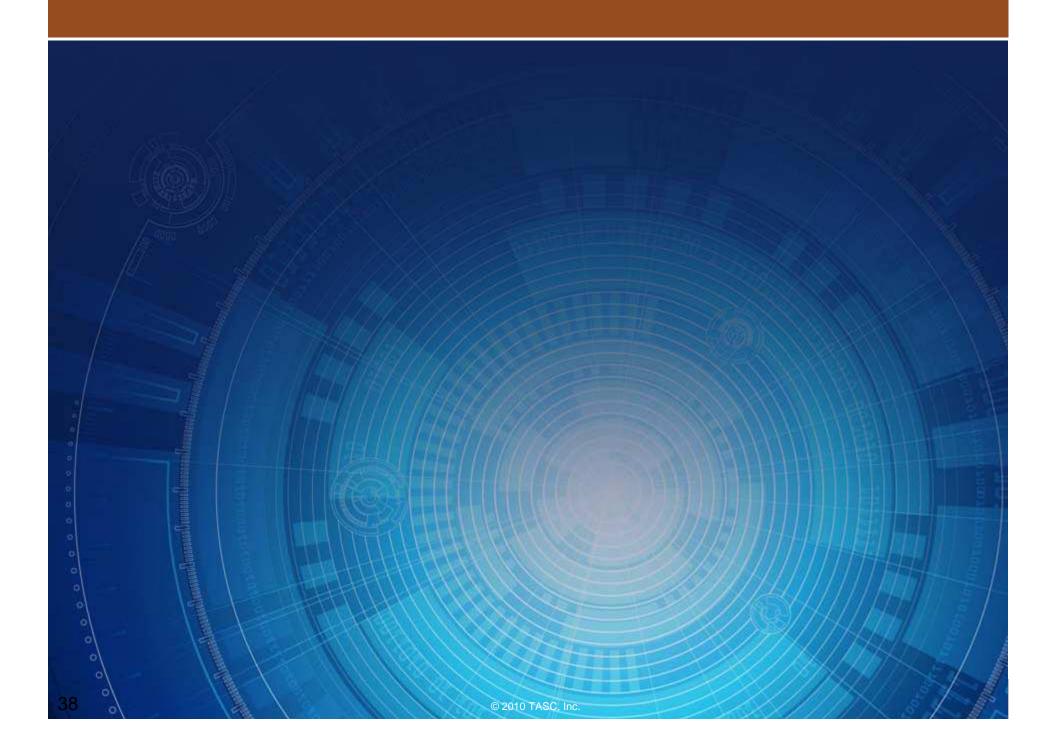
Cons:

- Can be very time-consuming
- Requires a good base of historical data and past function point counts
- Requires a trained function point counter
- Counting techniques can vary from counter to counter
- There are no COTS packages available for FP Counting that are recognized by IFPUG
- Suffers some of the same pitfalls as the Build-Up methodology
- Incurs the inherent risk when using analogies

Recommendations

- Begin counting Function Points alongside counting SLOC
 - Need historical data before relying on FP's completely
 - Strengthens FP knowledge and ability within group
- Count Function Points for past programs
 - Again, need to build a firm base of historical data
 - FP counting training and practice
- Compare Results
 - How long it takes to produce function point-based estimates
 - How Accurate / Precise (margin of error)
 - Customer preference

Conclusion


- Function Point Analysis quantifies a system or application's functional uses
- Function Points are a solid alternative to SLOC counting for developed SW estimation
 - Independent of Technology / Programming Languages
 - Relatively simple
 - Great communication device
- Can be completed at all stages of development
- Should Test and Practice
 - Gain a base of historical data
 - Compare to SLOC
 - Pick up where SLOC leaves off
- ▶ To Reiterate: This presentation is not trying to assert Function Point Analysis as dominant over SLOC-based estimation
 - FPA is presented as an oft-overlooked alternative to SLOC

► Thank You

- ► For more information, see the references page and visit some of the sites given
- Contact me with questions, comments, concerns, etc.
- ▶ Tucker Moore TASC
 - tucker.moore@tasc.com
 - (703) 449-3646
 - (703) 785-8650

Resources

- ► SCEA. Cost Estimating Body of Knowledge (CEBoK), Module 12 – Software Cost Estimation. 2009. Print.
- IFPUG Website, < http://www.ifpug.org/about/> (2009).
 Online.
- ▶ IFPUG. Function Point Counting Practices Manual. 2009. Print.
- Q/P Management Group Lori Holmes
- ► Software Metrics, http://www.softwaremetrics.com> (2009). Online.
- ► Total Metrics, < http://www.totalmetrics.com (2009). Online.

