Software Cost Estimating: Friend or Foe (to Agilists)?

Carol Dekkers, PMP, CFPS (Fellow), P.Eng. Quality Plus Technologies, Inc. <u>Dekkers@qualityplustech.com</u>

© Carol Dekkers/Quality Plus Technologies, Inc.

WHO AM I? Carol Dekkers, PMP, CFPS (Fellow), CSM, P.Eng.

Lead author of the International Cost Estimating and Analysis Association (ICEAA) Software Cost Estimating Body of Knowledge (CEBOK-S)

> ICEAA 2022 Educator of the Year Past-president, International Function Point Users Group (IFPUG) ISO project editor for software engineering standards since 1994 Founder, Quality Plus Technologies, Inc. Global consultant, published author, thought leader, speaker

> > 2

#Tror_mod = modifier_ob mirror object to mirror mirror_mod.mirror_object peration == "MIRROR_X": "rror_mod.use_X = True "rror_mod.use_Y = False Operation == "MIRROR_Y "rror_mod.use_Y = True "rror_mod.use_Y = True "rror_mod.use_X = False "peration == "MIRROR_Z"

election at the end -add ob.select= 1 er_ob.select=1 ntext.scene.objects.action "Selected" + str(modifient irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_objected_objec

What is the current state of software development?

Software Development Projects: Status Quo

Software Project Success¹

Software Project Growth²

:	Olympics	IT	Dams	DoD.	Rail	Tunnels	Roads
Average Cost Growth	156%	43-56%	24-96%	52%	45%	34%	20%
Frequency of Occurrence	10/10	8/10	\$/10	8/10	9/10	9/10	9/10
Frequency of Doubling	1 in 2	1 in 4	1 in 5	1 in 6	1 in 12	1 in 12	1 in 50
Average Schedule Delay	0%	63-84%	27-44%	27-52%	45%	23%	38%
Frequency of Schedule Dela	y 0/10	9/10	7/10	9/10	8/10	7/10	: 7/10
COMMO Multiple Indu Significant C	<mark>N</mark> ustries Exper Cost and Sch	rience		2	HIGH Cost: 50	% or More o	n Avera
COMMO Multiple Indu Significant C Grawth – Ha for a Long Ti	N ustries Exper Cost and Sch Is Been a Pro me	rience nédule oblem		3	HIGH Cost: 50 (Mean) Schedul Average	% or More o e: 30% or M (Mean)	n Avera ore on
COMMO Multiple Indu Significant C Grawth - Ha for a Long Ti FREQUENT	N ustries Exper Cost and Sch Is Been a Pro me	nience nedule oblem		3	HIGH Cost: 50 (Mean) Schedul Average EXTREA	% or More o e: 30% or M (Mean) AE (FOR C	on Avera ore on COST)
COMMO Multiple Indu Significant C Grawth - Ho for a Long Ti FREQUENT 70-80% of Pr	N ustries Exper Cost and Sch Is Been.a Pro me ojects Exper	rience belem		3	HIGH Cost: 50 (Mean) Schedul Average EXTREA Cost Gro	% or More o e: 30% or M (Mean) ME (FOR C owth in Exce	ore on COST)

- 1. Standish Group CHAOS report (2015). <Note: similar percentages in 2021>
- 2. Dr Christian Smart, Solving for Risk Management: Understanding the Critical Role of Uncertainty in Project Management (2021)

Top 10 Reasons for Project Challenges & Failures

Cause	Customer	Supplier	Comment / Solution
1. Poor user input	Х	Х	Training, time
2. Stakeholder conflicts	Х	?	Project Management
3. Vague requirements	?	?	Terminology
4. Poor cost and schedule estimation	?	X	Estimates overly-optimistic, risk (avoidance)
5. Skills that do not match the job	Х	X	Training
6. Hidden costs of going "Lean and Mean"	X	X	Unrealistic goals and resources
7. Failure to plan	?	?	Structure, PM
8. Communication breakdowns	X	X	Blame (He said, she said)
9. Poor architecture		X	Planning
10. Late "failure" warning signals		X	Measurement

Source: Loren May, CrossTalk

http://info.psu.edu.sa/psu/cis/biq/se501/a/a1/MajorCausesofSoftwareProjectFailures.pdf

What is the Impact of Unrealistic* Estimates?

Standish Group on U.S. government / business:

 \$81 B USD = canceled software projects
\$59 B USD = budget overruns

* Unrealistic estimates → Overly-optimistic (Cost unreasonably low, and duration too short) and Overlooks (avoids) risks

Unrealistic estimates lead to poor project outcomes

Okay, but isn't agile development (by its nature) unpredictable? Why bother estimating...?

10 Lessons Learned about Software Cost Estimating (in Agile)

1. Historical data based estimates are more reliable than theory (or guesses)

- Data analysis is important (data must be similar, relevant, comparable)
- **Data normalization** is critical (units of measure, scope, who, what, OT)
- Historical data is valuable → tells a factual story (CER, SER)

2. Cost estimating Maturity Model

				Level		Key Characteristics	Impact	
				C Continuously Improved	Continuous Refinement and Improvement	Quantitative targets established from organizational strategy Continuous Process Improvement is oriented towards these targets Detailed performance measures are collected and analyzed Total Cost of Ownership Estimates are used for Strategic Business Decisions	Reduced le Growth	
		4	Refined Improv	ved via Measurement and Analysis	Estimation Processes and tools are defined throughout the organization (i.e. Institutionalized) Rigorous Measurement and Analysis Estimation Process improved via Lessons Learned and Data Collection	ble Estimates & F ct Cost & Sch edu		
Many companies do not follow formal estimating practices (Level 1)		3	Implemented	Estimation	Process Standardization	A formal sizing approach and robust parametric estimationhas been adopted Processes are clearly defined Measurement and analysis of estimated vs. actuals Formal Sizing + Parametric Estimation = Key for better estimates	Credi	
	2	Introduction to Formal	Intro	oduction of a Formal Sizing Technique		First steps in adopting a formal sizing technique Simple CERs(Cost Estimation Relationships) Primitive use of parametric models Processes ae informal and non standardized	Risk & roject Success	
	No Practice - Ad Hoc			Informal or	No Process	No estimation processes exist at all Or estimation is performed in an inconsistent manner Estimates are a "wild guess" done by developers or Project Managers Poor estimates and plans are the root for project failure	Increased Reduced P	

Source: Adapted from Estimation Maturity Model by Dan Galorath and Esteban Sanchez, Galorath.com

3. Estimation Scope is critical: Range of software activities included

- Design, Code, Test, Integration (DCTI) factors cover the "core" parts of the process; other activities must be estimated separately or significant omissions will occur in the estimate
- Software "end to end" productivity attempts to cover all "software-specific" activities; higher level systems engineering activities must be estimated separately where relevant

Source: ICEAA CEBOK-S Draft (2021)

4. There is no "one size fits all" estimating approach

Source: ICEAA CEBOK-S Draft (2021)

5. Quantifying software size is fundamental to a good estimate

Source: Quality Plus Technologies, Inc.

6. Estimate the product backlog using functional size (Simple FP or FP)

- Simple Function Points is standardized (International Function Point Users Group SFP v2.1 method)
- Size based on number of Logical Files (LF = 7 SFP each) and Elementary Processes (EP = 4.6 SFP each)
- Examples:
 - CRUD + entity = 4 EP + 1 LF = 25.4 SFP
 - 10 unique reports = 10 EP = 46 SFP
 - Data sent from other system = 1 or more EP
 - Data sent to other system = 1 or more EP

7. Software development is subject to Diseconomies of Scale (Exp > 1)

Effort = Size^Exp * 1/Productivity

8. Agile versus Waterfall: different cost (estimating) considerations

© Carol Dekkers/Quality Plus Technologies, Inc.

9. Hybrid software solutions are Nontrivial: Development vs Procurement

10. Continuum of Development vs Procurement

1 Commercial Off-the-Shelf (COTS) and Information System (IS)/Business Systems software (packages) are covered in Lesson 6 This slide is used here to depict where software development paradigms fit in the context of software development

Agile and Cost Estimation

- Poor cost and schedule estimates can doom a project or initiative from the "get go"
- Software cost and schedule estimates are especially challenging to cost estimators, and the team (TLA's, types of requirements)
- Communication between the two disciplines (cost estimating and development) can lead to far better outcomes
- Software cost estimation is a professional endeavor (ICEAA CEBOK-S)

Builds on Pre-requisite Knowledge: ICEAA CEBOK Modules

- Basic knowledge of cost estimating content as highlighted
- Available to ICEAA members <u>https://wikidev.iceaaonline.com/</u> <u>wiki/Main_Page</u>

Data-based, realistic agile development estimates \rightarrow positive project outcomes

A Final Note...

'The software industry has the worst metrics and measurement practices of any industry in human history' – Capers Jones (2018)¹

"Size- and data-based software estimates are the key to better project outcomes, and in time, better metrics." – Carol Dekkers, Dec 2021

1. Source: Capers Jones, Quantifying Software – Global and Industry Perspectives, 2018

Kop khun Carol Dekkers 813-816-1329 Caroldekkers@gmail.com CEBOK-S: www.iceaaonline.com

Grazie

(Spasibo)

Takk

Dankie

Tack

Diolch